Dual effect of WIN-34B on osteogenesis and osteoclastogenesis in cytokine-induced mesenchymal stem cells and bone marrow cells

被引:11
|
作者
Seo, Byung-Kwan [1 ]
Ryu, Hee-Kyoung [1 ]
Park, Yeon-Cheol [1 ]
Huh, Jeong-Eun [2 ]
Baek, Yong-Hyeon [1 ]
机构
[1] Kyung Hee Univ, Grad Sch, Dept Clin Korean Med, 26 Kyungheedae Ro, Seoul 02447, South Korea
[2] Kyung Hee Univ, East West Bone & Joint Res Inst, Oriental Med Res Ctr Bone & Joint Dis, 892 Dongnam Ro, Seoul 05278, South Korea
基金
新加坡国家研究基金会;
关键词
WIN-34B; Osteogenesis; Osteoclastogenesis; Mesenchymal stem cells; Bone marrow cells; Osteoporosis; IN-VITRO; OSTEOPOROSIS; DIFFERENTIATION; PHOSPHORYLATION; OSTEOARTHRITIS; MINERALIZATION; ACTIVATION; PATHWAYS; THERAPY; RUNX2;
D O I
10.1016/j.jep.2016.07.022
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethnopharmacological relevance: As an n-butanol fractionated extracted mixture of Lonicera japonica Thunb, dried flowers and Anemarrhena asphodeloides Bunge, root, WIN-34B has been reported the analgesic, anti-inflammatory, cartilage-repairing and protective effects in previous studies. Aim of the study: To investigate the effect of WIN-34B on osteogenesis and osteoclastogenesis in cytokine-induced mesenchymal stem cells and bone marrow cells. Materials and methods: To examine the effect of WIN-34B on osteogenic differentiation, human mesenchymal stem cells (hMSCs) were treated with WIN-34B (1 mu g/mL and 10 mu g/mL). Alkaline phosphatase (ALP) activity was evaluated and Von Kossa staining was conducted. Mice bone marrow macrophages (BMMs) were obtained and treated with receptor activator of nuclear factor-kappa B ligand (RANKL) and macrophage colony stimulating factor (m-CSF) to induce osteoclastogenesis. To investigate osteoclast differentiation, tartrate-resistant acid phosphatase (TRAP) staining was conducted after treatment with WIN-34B. Osteoclastogenic conditions were induced by stimulating the cells with interleukin (IL)-1 alpha, IL-17, and tumor necrosis factor (TNF-alpha) in hMSCs and BMMs co-culture systems. The expression levels of osteoprotegerin (OPG), RANKL, runt-related transcription factor 2 (RUNX2), IL-17, c-Fos, TNF-alpha, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were measured by reverse transcription polymerase chain reaction (RT-PCR). The expression levels of nuclear factor-kappaB (NF-KB), inhibitory kappa B-alpha (I kappa B alpha), phospho-NF-kappa B, phospho-I kappa B alpha, beta-actin, p38 MAPK, phospho-c-Jun N-terminal kinase UNK), phospho-extracellular-signal regulated kinase (ERK), phospho-p38 mitogen-activated protein kinase (MAPK), phospho-JNK, and phospho-ERK were measured by western blot analysis. Results: WIN-34B promoted ALP activity and mineralization of hMSCs. In TRAP-stained BMMs, the number of multinucleated cells decreased after WIN-34B treatment. WIN-34B increased the OPG/RAN-KL ratio and the expression of RUNX2, and suppressed the expression of IL-17, c-Fos, and TNF-alpha. It also suppressed the activation of NF-kappa B, I kappa B alpha, p38 MAPK, and JNK in a dose-dependent manner. Conclusions: These results demonstrated that WIN-34B increased osteogenesis and decreased osteoclastogenesis in cytokine-induced mesenchymal stem cells and bone marrow cells via inhibition of the NF-kappa B, JNK, and p38 MAPK pathways. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:227 / 236
页数:10
相关论文
共 50 条
  • [21] Role and mechanism of PTEN in adiponectin-induced osteogenesis in human bone marrow mesenchymal stem cells
    Liu, Xuhong
    Chen, Tong
    Wu, Yuwei
    Tang, Zhihui
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 483 (01) : 712 - 717
  • [22] Rho A signaling contributes to simvastatin-induced osteogenesis in bone marrow mesenchymal stem cells.
    Tai, I-C.
    Wang, Y-H.
    Chang, J-K.
    Ho, M-L.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [23] Potential mechanisms underlying the Runx2 induced osteogenesis of bone marrow mesenchymal stem cells
    Xu, Jiahai
    Li, Zhanghua
    Hou, Yudong
    Fang, Weijun
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2015, 7 (12): : 2527 - 2535
  • [24] Potentiation of osteoclastogenesis by adipogenic conversion of bone marrow-derived mesenchymal stem cells
    Mori, Keisuke
    Suzuki, Keiji
    Hozumi, Akira
    Goto, Hisataka
    Tomita, Masato
    Koseki, Hironobu
    Yamashita, Shunichi
    Osaki, Makoto
    BIOMEDICAL RESEARCH-TOKYO, 2014, 35 (02): : 153 - 159
  • [25] CYTL1 regulates bone homeostasis in mice by modulating osteogenesis of mesenchymal stem cells and osteoclastogenesis of bone marrow-derived macrophages
    Youngnim Shin
    Yoonkyung Won
    Jeong-In Yang
    Jang-Soo Chun
    Cell Death & Disease, 10
  • [26] CYTL1 regulates bone homeostasis in mice by modulating osteogenesis of mesenchymal stem cells and osteoclastogenesis of bone marrow-derived macrophages
    Shin, Youngnim
    Won, Yoonkyung
    Yang, Jeong-In
    Chun, Jang-Soo
    CELL DEATH & DISEASE, 2019, 10 (2)
  • [27] Comparison of the cytokine-induced migratory response between primary and subcultured populations of rat mesenchymal bone marrow cells
    Uchida, K.
    Urabe, K.
    Naruse, K.
    Ujihira, M.
    Mabuchi, K.
    Itoman, M.
    JOURNAL OF ORTHOPAEDIC SCIENCE, 2007, 12 (05) : 484 - 492
  • [28] Bone Marrow Mesenchymal Stem Cells
    Ohishi, Masanobu
    Schipani, Ernestina
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2010, 109 (02) : 277 - 282
  • [29] Effect of adult bone marrow mesenchymal stem cells on bone healing
    Da Silva Minas, M. A.
    Sivak, M. G.
    Cole, A. G.
    Francalancia, V
    Lewis, A.
    Tous, M., I
    Di Lonardo, A.
    Puia, S.
    Alvarez Cantoni, H.
    Guglielmotti, M. B.
    BONE, 2007, 40 (03) : S7 - S7
  • [30] Human amnion-derived mesenchymal stem cells promote osteogenesis of human bone marrow mesenchymal stem cells against glucolipotoxicity
    Bian, Yifeng
    Ma, Xiaojie
    Wang, Ruixia
    Yuan, Hua
    Chen, Ning
    Du, Yifei
    FEBS OPEN BIO, 2019, 9 (01): : 74 - 81