Dual effect of WIN-34B on osteogenesis and osteoclastogenesis in cytokine-induced mesenchymal stem cells and bone marrow cells

被引:11
|
作者
Seo, Byung-Kwan [1 ]
Ryu, Hee-Kyoung [1 ]
Park, Yeon-Cheol [1 ]
Huh, Jeong-Eun [2 ]
Baek, Yong-Hyeon [1 ]
机构
[1] Kyung Hee Univ, Grad Sch, Dept Clin Korean Med, 26 Kyungheedae Ro, Seoul 02447, South Korea
[2] Kyung Hee Univ, East West Bone & Joint Res Inst, Oriental Med Res Ctr Bone & Joint Dis, 892 Dongnam Ro, Seoul 05278, South Korea
基金
新加坡国家研究基金会;
关键词
WIN-34B; Osteogenesis; Osteoclastogenesis; Mesenchymal stem cells; Bone marrow cells; Osteoporosis; IN-VITRO; OSTEOPOROSIS; DIFFERENTIATION; PHOSPHORYLATION; OSTEOARTHRITIS; MINERALIZATION; ACTIVATION; PATHWAYS; THERAPY; RUNX2;
D O I
10.1016/j.jep.2016.07.022
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethnopharmacological relevance: As an n-butanol fractionated extracted mixture of Lonicera japonica Thunb, dried flowers and Anemarrhena asphodeloides Bunge, root, WIN-34B has been reported the analgesic, anti-inflammatory, cartilage-repairing and protective effects in previous studies. Aim of the study: To investigate the effect of WIN-34B on osteogenesis and osteoclastogenesis in cytokine-induced mesenchymal stem cells and bone marrow cells. Materials and methods: To examine the effect of WIN-34B on osteogenic differentiation, human mesenchymal stem cells (hMSCs) were treated with WIN-34B (1 mu g/mL and 10 mu g/mL). Alkaline phosphatase (ALP) activity was evaluated and Von Kossa staining was conducted. Mice bone marrow macrophages (BMMs) were obtained and treated with receptor activator of nuclear factor-kappa B ligand (RANKL) and macrophage colony stimulating factor (m-CSF) to induce osteoclastogenesis. To investigate osteoclast differentiation, tartrate-resistant acid phosphatase (TRAP) staining was conducted after treatment with WIN-34B. Osteoclastogenic conditions were induced by stimulating the cells with interleukin (IL)-1 alpha, IL-17, and tumor necrosis factor (TNF-alpha) in hMSCs and BMMs co-culture systems. The expression levels of osteoprotegerin (OPG), RANKL, runt-related transcription factor 2 (RUNX2), IL-17, c-Fos, TNF-alpha, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were measured by reverse transcription polymerase chain reaction (RT-PCR). The expression levels of nuclear factor-kappaB (NF-KB), inhibitory kappa B-alpha (I kappa B alpha), phospho-NF-kappa B, phospho-I kappa B alpha, beta-actin, p38 MAPK, phospho-c-Jun N-terminal kinase UNK), phospho-extracellular-signal regulated kinase (ERK), phospho-p38 mitogen-activated protein kinase (MAPK), phospho-JNK, and phospho-ERK were measured by western blot analysis. Results: WIN-34B promoted ALP activity and mineralization of hMSCs. In TRAP-stained BMMs, the number of multinucleated cells decreased after WIN-34B treatment. WIN-34B increased the OPG/RAN-KL ratio and the expression of RUNX2, and suppressed the expression of IL-17, c-Fos, and TNF-alpha. It also suppressed the activation of NF-kappa B, I kappa B alpha, p38 MAPK, and JNK in a dose-dependent manner. Conclusions: These results demonstrated that WIN-34B increased osteogenesis and decreased osteoclastogenesis in cytokine-induced mesenchymal stem cells and bone marrow cells via inhibition of the NF-kappa B, JNK, and p38 MAPK pathways. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:227 / 236
页数:10
相关论文
共 50 条
  • [1] Effect of bone marrow mesenchymal stem cells on the proliferation of bone marrow CD34+ cells in vitro
    王荣
    ChinaMedicalAbstracts(InternalMedicine), 2013, 30 (01) : 18 - 18
  • [2] Cytokine-induced in vivo expansion and mobilization of marrow mesenchymal stem cells in nonhuman primates
    Larsen, S
    Chug, K
    Battab, F
    Armstrong, M
    Hayward, M
    Leung, L
    Thomson, S
    Hennessy, A
    Rasko, J
    BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 2006, 12 (02) : 107 - 107
  • [3] THE EFFECT OF UREMIC TOXIN INDOXYL SULFATE ON OSTEOGENESIS IN BONE MARROW MESENCHYMAL STEM CELLS
    Hsieh, Chin Wen
    Ho, Mei-Ling
    Chen, Chung-Hwan
    Chang, Je-Ken
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2019, 34
  • [4] Bone marrow mesenchymal stem cells suppressing activation of allogeneic cytokine-induced killer/natural killer cells either by direct or indirect interaction
    Li, Yang
    Qu, Yu H.
    Wu, Yan F.
    Liu, Ling
    Lin, Xiang H.
    Huang, Ke
    Wei, Jing
    CELL BIOLOGY INTERNATIONAL, 2015, 39 (04) : 435 - 445
  • [5] Crocin promotes osteogenesis differentiation of bone marrow mesenchymal stem cells
    Borui Li
    Kairong Qin
    Benjie Wang
    Baoyi Liu
    Weiting Yu
    Zhigang Li
    Dewei Zhao
    In Vitro Cellular & Developmental Biology - Animal, 2020, 56 : 680 - 688
  • [6] Crocin promotes osteogenesis differentiation of bone marrow mesenchymal stem cells
    Li, Borui
    Qin, Kairong
    Wang, Benjie
    Liu, Baoyi
    Yu, Weiting
    Li, Zhigang
    Zhao, Dewei
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2020, 56 (08) : 680 - 688
  • [7] Pretreatment with Bisphosphonate Enhances Osteogenesis of Bone Marrow Mesenchymal Stem Cells
    Hu, Lei
    Wen, Ying
    Xu, Junji
    Wu, Tingting
    Zhang, Chunmei
    Wang, Jinsong
    Du, Jie
    Wang, Songlin
    STEM CELLS AND DEVELOPMENT, 2017, 26 (02) : 123 - 132
  • [8] Rho A signaling contributes to statin-induced osteogenesis in bone marrow mesenchymal stem cells
    Tai, I-C.
    Ho, M-L.
    Chang, J-K.
    MOLECULAR BIOLOGY OF THE CELL, 2011, 22
  • [9] Comparison of Differentiation of Induced Pluripotent Stem Cells and Bone-Marrow Mesenchymal Stem Cells to Osteoblast: Osteogenesis versus Pluripotency
    Foroutan, T.
    INTERNATIONAL JOURNAL OF ORGAN TRANSPLANTATION MEDICINE, 2016, 7 (02): : 91 - 96
  • [10] Study of the osteogenesis effect of icariside II and icaritin on canine bone marrow mesenchymal stem cells
    Guangming Luo
    Biao Xu
    Weihong Wang
    Yong Wu
    Ming Li
    Journal of Bone and Mineral Metabolism, 2018, 36 : 668 - 678