Quantum Subgroups of the Haagerup Fusion Categories

被引:39
|
作者
Grossman, Pinhas [1 ]
Snyder, Noah [2 ]
机构
[1] IMPA, BR-22460320 Rio De Janeiro, Brazil
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
INTERMEDIATE SUBFACTORS; MODULAR INVARIANTS; TENSOR CATEGORIES; HOPF-ALGEBRAS; LATTICES; CLASSIFICATION; ANALOG;
D O I
10.1007/s00220-012-1427-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We answer three related questions concerning the Haagerup subfactor and its even parts, the Haagerup fusion categories. Namely we find all simple module categories over each of the Haagerup fusion categories (in other words, we find the "quantum subgroups" in the sense of Ocneanu), we find all irreducible subfactors whose principal even part is one of the Haagerup fusion categories, and we compute the Brauer-Picard groupoid of Morita equivalences of the Haagerup fusion categories. In addition to the two even parts of the Haagerup subfactor, there is exactly one more fusion category which is Morita equivalent to each of them. This third fusion category has six simple objects and the same fusion rules as one of the even parts of the Haagerup subfactor, but has not previously appeared in the literature. We also find the full lattice of intermediate subfactors for every irreducible subfactor whose even part is one of these three fusion categories, and we discuss how our results generalize to Izumi subfactors.
引用
收藏
页码:617 / 643
页数:27
相关论文
共 50 条
  • [1] Quantum Subgroups of the Haagerup Fusion Categories
    Pinhas Grossman
    Noah Snyder
    Communications in Mathematical Physics, 2012, 311 : 617 - 643
  • [2] THE EXTENDED HAAGERUP FUSION CATEGORIES
    Grossman, Pimhas
    Morrison, Scott
    Penneys, David
    Peters, Emily
    Snyder, Noah
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (02): : 589 - 664
  • [3] The Asaeda-Haagerup fusion categories
    Grossman, Pinhas
    Izumi, Masaki
    Snyder, Noah
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 743 : 261 - 305
  • [4] Structure constants, Isaacs property and extended Haagerup fusion categories
    Burciu, Sebastian
    Palcoux, Sebastien
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (04) : 1438 - 1452
  • [5] THE BRAUER-PICARD GROUP OF THE ASAEDA-HAAGERUP FUSION CATEGORIES
    Grossman, Pinhas
    Snyder, Noah
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) : 2289 - 2331
  • [6] Drinfeld centers of fusion categories arising from generalized Haagerup subfactors
    Grossman, Pinhas
    Izumi, Masaki
    QUANTUM TOPOLOGY, 2022, 13 (04) : 593 - 668
  • [7] Graded extensions of generalized Haagerup categories
    Grossman, Pinhas
    Izumi, Masaki
    Snyder, Noah
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2023, 19 (05) : 2335 - 2408
  • [8] FROBENIUS-SCHUR INDICATORS FOR NEAR-GROUP AND HAAGERUP-IZUMI FUSION CATEGORIES
    Tucker, Henry
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 303 (01) : 337 - 359
  • [9] Maximal subgroups and von Neumann subalgebras with the Haagerup property
    Jiang, Yongle
    Skalski, Adam
    GROUPS GEOMETRY AND DYNAMICS, 2021, 15 (03) : 849 - 892
  • [10] Derived counterparts of fusion categories of quantum groups
    Camilo Arias, Juan
    JOURNAL OF ALGEBRA, 2020, 562 : 257 - 285