PRODUCT RECURRENT PROPERTIES, DISJOINTNESS AND WEAK DISJOINTNESS

被引:11
|
作者
Dong, Pandeng [1 ]
Shao, Song [1 ]
Ye, Xiangdong [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
关键词
DISTAL;
D O I
10.1007/s11856-011-0128-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a collection of subsets of Z(+) and (X, T) be a dynamical system; x. X is F-recurrent if for each neighborhood U of x, {n is an element of Z(+) : T(n)x is an element of U} is an element of F; x is F-product recurrent if (x, y) is recurrent for any F-recurrent point y in any dynamical system (Y, S). It is well known that x is {infinite}-product recurrent if and only if it is minimal and distal. In this paper it is proved that the closure of a {syndetic}-product recurrent point (i.e., weakly product recurrent point) has a dense minimal points; and a {piecewise syndetic}-product recurrent point is minimal. Results on product recurrence when the closure of an F-recurrent point has zero entropy are obtained. It is shown that if a transitive system is disjoint from all minimal systems, then each transitive point is weakly product recurrent. Moreover, it proved that each weakly mixing system with dense minimal points is disjoint from all minimal PI systems; and each weakly mixing system with a dense set of distal points or an F-s-independent system is disjoint from all minimal systems. Results on weak disjointness are described when considering disjointness.
引用
收藏
页码:463 / 507
页数:45
相关论文
共 50 条
  • [41] Testing disjointness of private datasets
    Kiayias, A
    Mitrofanova, A
    FINANCIAL CRYPTOGRAPHY AND DATA SECURITY, 2005, 3570 : 109 - 124
  • [42] Rigidity in dynamics and Mobius disjointness
    Kanigowski, Adam
    Lemanczyk, Mariusz
    Radziwill, Maksym
    FUNDAMENTA MATHEMATICAE, 2021, 255 (03) : 309 - 336
  • [43] DISJOINTNESS OF DYNAMICAL-SYSTEMS
    AUSLANDER, J
    DOWKER, YN
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1979, 85 (MAY) : 477 - 491
  • [44] INVERTIBLE DISJOINTNESS PRESERVING OPERATORS
    HUIJSMANS, CB
    DEPAGTER, B
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1994, 37 : 125 - 132
  • [45] ESSENTIAL DISJOINTNESS AND THE DAUGAVET EQUATION
    ANSARI, SI
    HOUSTON JOURNAL OF MATHEMATICS, 1993, 19 (04): : 587 - 601
  • [46] ALGEBRAIC EQUIVALENTS OF FLOW DISJOINTNESS
    ELLIS, R
    GLASNER, S
    SHAPIRO, L
    ILLINOIS JOURNAL OF MATHEMATICS, 1976, 20 (02) : 354 - 360
  • [47] Automatic acquisition of class disjointness
    Voelker, Johanna
    Fleischhacker, Daniel
    Stuckenschmidt, Heiner
    JOURNAL OF WEB SEMANTICS, 2015, 35 : 124 - 139
  • [48] A Strong Direct Product Theorem for Corruption and the Multiparty Communication Complexity of Disjointness
    Paul Beame
    Toniann Pitassi
    Nathan Segerlind
    Avi Wigderson
    computational complexity, 2006, 15 : 391 - 432
  • [49] Measure complexity and Mobius disjointness
    Huang, Wen
    Wang, Zhiren
    Ye, Xiangdong
    ADVANCES IN MATHEMATICS, 2019, 347 : 827 - 858
  • [50] A NOTE ON DISJOINTNESS PRESERVING OPERATORS
    DEPAGTER, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 90 (04) : 543 - 549