The global divide in data-driven farming

被引:77
|
作者
Mehrabi, Zia [1 ,2 ,3 ]
McDowell, Mollie J. [3 ]
Ricciardi, Vincent [1 ,2 ]
Levers, Christian [1 ,2 ,4 ]
Martinez, Juan Diego [1 ,2 ]
Mehrabi, Natascha
Wittman, Hannah [2 ,3 ]
Ramankutty, Navin [1 ,2 ]
Jarvis, Andy [5 ]
机构
[1] Univ British Columbia, UBC Sch Publ Policy & Global Affairs, Vancouver, BC, Canada
[2] Univ British Columbia, Inst Resources Environm & Sustainabil, Vancouver, BC, Canada
[3] Univ British Columbia, Ctr Sustainable Food Syst, Vancouver, BC, Canada
[4] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol, Leipzig, Germany
[5] Int Ctr Trop Agr, CGIAR Res Program Big Data Agr, Cali, Colombia
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院; 欧盟地平线“2020”;
关键词
D O I
10.1038/s41893-020-00631-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Big data and mobile technology are widely claimed to be global disruptive forces in agriculture that benefit small-scale farmers. Yet the access of small-scale farmers to this technology is poorly understood. We show that only 24-37% of farms of <1 ha in size are served by third generation (3G) or 4G services, compared to 74-80% of farms of >200 ha in size. Furthermore, croplands with severe yield gaps, climate-stressed locations and food-insecure populations have poor service coverage. Across many countries in Africa, less than similar to 40% of farming households have Internet access, and the cost of data remains prohibitive. We recommend a digital inclusion agenda whereby governments, the development community and the private sector focus their efforts to improve access so that data-driven agriculture is available to all farmers globally.
引用
收藏
页码:154 / 160
页数:7
相关论文
共 50 条
  • [41] DATA-DRIVEN ORIGINALISM
    Lee, Thomas R.
    Phillips, James C.
    [J]. UNIVERSITY OF PENNSYLVANIA LAW REVIEW, 2019, 167 (02) : 261 - 335
  • [42] Data-Driven Healthcare
    Chang, Hyejung
    [J]. HEALTHCARE INFORMATICS RESEARCH, 2015, 21 (01) : 61 - 62
  • [43] Data-Driven Computing
    Kirchdoerfer, Trenton
    Ortiz, Michael
    [J]. ADVANCES IN COMPUTATIONAL PLASTICITY: A BOOK IN HONOUR OF D. ROGER J. OWEN, 2018, 46 : 165 - 183
  • [44] Data-driven hypotheses
    van Helden, Paul
    [J]. EMBO REPORTS, 2013, 14 (02) : 104 - 104
  • [45] Data-driven Geodynamics
    Ismail-Zadeh, Alik
    [J]. JOURNAL OF THE GEOLOGICAL SOCIETY OF INDIA, 2021, 97 (03) : 223 - 226
  • [46] The Data-driven Industry
    Kwortnik, Robert
    [J]. CORNELL HOSPITALITY QUARTERLY, 2013, 54 (01) : 4 - 4
  • [47] DATA-DRIVEN ONTOLOGIES
    Costello, James C.
    Schrider, Dan
    Gehlhausen, Jeff
    Dalkilic, Mehmet
    [J]. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2009, 2009, : 15 - 26
  • [48] Data-driven Geodynamics
    Alik Ismail-Zadeh
    [J]. Journal of the Geological Society of India, 2021, 97 : 223 - 226
  • [49] Data-Driven Phenotyping
    Nemati, Shamim
    Orr, Jeremy
    Malhotra, Atul
    [J]. IEEE PULSE, 2014, 5 (05) : 45 - 48
  • [50] Data-driven deconvolution
    Hesse, CH
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 10 (04) : 343 - 373