The classical Lefschetz fixed point formula expresses the number of fixed points of a continuous map f : M-->M in terms of the transformation induced by f on the cohomology of M. In 1966 Atiyah and Bott extended this formula to elliptic complexes over a compact closed manifold. In particular, they presented a holomorphic Lefschetz formula for compact complex manifolds without boundary, a result, in the framework of algebraic geometry due to Eichler (1957) for holomorphic curves. On compact complex manifolds with boundary the Dolbeault complex is not elliptic, hence the Atiyah-Bott theory is no longer applicable. To get rid of the difficulties related to the boundary behaviour of the Dolbeault cohomology, Donelli and Fefferman (1986) derived a fixed point formula for the Bergman metric. The purpose of this paper is to present a holomorphic Lefschetz formula on a strictly convex domain in C-n, n>1.
机构:
Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, ItalyUniv Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
Cappelletti-Montano, Beniamino
De Nicola, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II 132, I-84084 Fisciano, ItalyUniv Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
De Nicola, Antonio
Carlos Marrero, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Univ La Laguna, Fac Ciencias, Dept Matemat Estadist & Invest Operat, Unidad Asociada ULL CSIC Geometria Diferencial &, Tenerife, SpainUniv Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
机构:
Univ Paris 06, Sorbonne Univ, Lab Jacques Louis Lions, CNRS,UMR 7598, F-75005 Paris, FranceUniv Paris 06, Sorbonne Univ, Lab Jacques Louis Lions, CNRS,UMR 7598, F-75005 Paris, France
Canevari, Giacomo
Segatti, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, ItalyUniv Paris 06, Sorbonne Univ, Lab Jacques Louis Lions, CNRS,UMR 7598, F-75005 Paris, France