Holomorphic Lefschetz formula for manifolds with boundary

被引:2
|
作者
Kytmanov, A
Myslivets, S
Tarkhanov, N
机构
[1] Krasnoyarsk State Univ, Krasnoyarsk 660041, Russia
[2] Univ Potsdam, Inst Math, D-14415 Potsdam, Germany
关键词
D O I
10.1007/s00209-003-0612-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Lefschetz fixed point formula expresses the number of fixed points of a continuous map f : M-->M in terms of the transformation induced by f on the cohomology of M. In 1966 Atiyah and Bott extended this formula to elliptic complexes over a compact closed manifold. In particular, they presented a holomorphic Lefschetz formula for compact complex manifolds without boundary, a result, in the framework of algebraic geometry due to Eichler (1957) for holomorphic curves. On compact complex manifolds with boundary the Dolbeault complex is not elliptic, hence the Atiyah-Bott theory is no longer applicable. To get rid of the difficulties related to the boundary behaviour of the Dolbeault cohomology, Donelli and Fefferman (1986) derived a fixed point formula for the Bergman metric. The purpose of this paper is to present a holomorphic Lefschetz formula on a strictly convex domain in C-n, n>1.
引用
收藏
页码:769 / 794
页数:26
相关论文
共 50 条
  • [41] Periods for holomorphic maps via Lefschetz numbers
    Llibre, Jaume
    Todd, Michael
    ABSTRACT AND APPLIED ANALYSIS, 2005, (06) : 575 - 579
  • [42] Lefschetz decomposition for de Rham cohomology on weakly Lefschetz symplectic manifolds
    Qiang Tan
    Haifeng Xu
    Frontiers of Mathematics in China, 2015, 10 : 1169 - 1178
  • [43] Lefschetz decomposition for de Rham cohomology on weakly Lefschetz symplectic manifolds
    Tan, Qiang
    Xu, Haifeng
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (05) : 1169 - 1178
  • [44] HARD LEFSCHETZ THEOREM FOR SASAKIAN MANIFOLDS
    Cappelletti-Montano, Beniamino
    De Nicola, Antonio
    Yudin, Ivan
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (01) : 47 - 66
  • [45] HARD LEFSCHETZ THEOREM FOR VAISMAN MANIFOLDS
    Cappelletti-Montano, Beniamino
    De Nicola, Antonio
    Carlos Marrero, Juan
    Yudin, Ivan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (02) : 755 - 776
  • [46] Lefschetz complex conditions for complex manifolds
    Cordero, LA
    Fernández, M
    Ugarte, L
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 22 (04) : 355 - 373
  • [47] An anomaly formula for Ray-Singer metrics on manifolds with boundary
    Brüning, J
    Ma, XN
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (07) : 603 - 608
  • [48] Morse's index formula in VMO for compact manifolds with boundary
    Canevari, Giacomo
    Segatti, Antonio
    Veneroni, Marco
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (10) : 3043 - 3082
  • [49] The zeta functional determinants on manifolds with boundary .1. The formula
    Chang, SYA
    Qing, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 147 (02) : 327 - 362
  • [50] An anomaly formula for Ray-Singer metrics on manifolds with boundary
    Bruening, J.
    Ma, Xiaonan
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2006, 16 (04) : 767 - 837