LIMIT THEORY FOR POINT PROCESSES IN MANIFOLDS

被引:32
|
作者
Penrose, Mathew D. [1 ]
Yukich, J. E.
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
来源
ANNALS OF APPLIED PROBABILITY | 2013年 / 23卷 / 06期
关键词
Manifolds; dimension estimators; entropy estimators; Vietoris-Rips complex; clique counts; GAUSSIAN LIMITS; LARGE NUMBERS; RENYI INFORMATION; SENSOR NETWORKS; LAWS; COVERAGE; ENTROPY;
D O I
10.1214/12-AAP897
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Y-i, i >= 1, be i.i.d. random variables having values in an m-dimensional manifold M subset of R-d and consider sums Sigma(n)(i=1) xi (n(1/m)Y(i), {n(1/m)Y(j)}(j=1)(n)), where xi is a real valued function defined on pairs (y, Y), with y epsilon R-d and Y subset of R-d locally finite. Subject to xi satisfying a weak spatial dependence and continuity condition, we show that such sums satisfy weak laws of large numbers, variance asymptotics and central limit theorems. We show that the limit behavior is controlled by the value of xi on homogeneous Poisson point processes on m-dimensional hyperplanes tangent to M. We apply the general results to establish the limit theory of dimension and volume content estimators, Renyi and Shannon entropy estimators and clique counts in the Vietoris-Rips complex on {Y-i}(i=1)(n).
引用
收藏
页码:2161 / 2211
页数:51
相关论文
共 50 条