Noncommutative geometry with graded differential Lie algebras

被引:7
|
作者
Wulkenhaar, R
机构
[1] Inst. für Theoretische Physik, Universität Leipzig, D-04109 Leipzig
关键词
D O I
10.1063/1.532048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting with a Hilbert space endowed with a representation of a unitary Lie algebra and an action of a generalized Dirac operator, we develop a mathematical concept towards gauge field theories. This concept shares common features with the Connes-Lott prescription of noncommutative geometry, differs from that, however, by the implementation of unitary Lie algebras instead of associative *-algebras. The general scheme is presented in detail and is applied to functions x matrices. (C) 1997 American Institute of Physics.
引用
收藏
页码:3358 / 3390
页数:33
相关论文
共 50 条
  • [41] NONCOMMUTATIVE DIFFERENTIAL GEOMETRY
    CONNES, A
    PUBLICATIONS MATHEMATIQUES, 1985, (62): : 257 - 360
  • [42] GRADED LIE ALGEBRAS OF AN ALGEBRA
    NIJENHUIS, A
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1967, 70 (05): : 475 - +
  • [43] A radical for graded Lie algebras
    Daniel Ceretto
    Esther García
    Miguel Gómez Lozano
    Acta Mathematica Hungarica, 2012, 136 : 16 - 29
  • [44] On the homology of graded Lie algebras
    Tirao, P
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 156 (2-3) : 357 - 366
  • [45] Graded identities for Lie algebras
    Koshlukov, Plamen
    Krasilnikov, Alexei
    Silva, Diogo D. P.
    GROUPS, RINGS AND GROUP RINGS, 2009, 499 : 181 - 188
  • [46] Graded Lie algebras and applications
    Iachello, F
    LATIN-AMERICAN SCHOOL OF PHYSICS - XXXV ELAF: SUPERSYMMETRIES IN PHYSICS AND ITS APPLICATIONS, 2005, 744 : 85 - 104
  • [48] A radical for graded Lie algebras
    Ceretto, D.
    Garcia, E.
    Gomez Lozano, M.
    ACTA MATHEMATICA HUNGARICA, 2012, 136 (1-2) : 16 - 29
  • [49] On the structure of graded Lie algebras
    Calderon Martin, Antonio J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [50] On a Geometry Associated with Free Pseudo-Product Fundamental Graded Lie Algebras
    Yatsui, Tomoaki
    JOURNAL OF LIE THEORY, 2015, 25 (02) : 485 - 506