Observation of unconventional chiral fermions with long Fermi arcs in CoSi

被引:291
|
作者
Rao, Zhicheng [1 ,2 ,3 ]
Li, Hang [1 ,2 ,3 ]
Zhang, Tiantian [1 ,2 ,3 ]
Tian, Shangjie [4 ,5 ]
Li, Chenghe [4 ,5 ]
Fu, Binbin [1 ,2 ,3 ]
Tang, Cenyao [1 ,2 ,3 ]
Wang, Le [1 ,2 ,3 ]
Li, Zhilin [1 ,2 ,6 ]
Fan, Wenhui [1 ,2 ,3 ]
Li, Jiajun [1 ,2 ,3 ]
Huang, Yaobo [7 ]
Liu, Zhehong [1 ,2 ,3 ]
Long, Youwen [1 ,2 ,8 ]
Fang, Chen [1 ,2 ,8 ,9 ]
Weng, Hongming [1 ,2 ,3 ,8 ,9 ]
Shi, Youguo [1 ,2 ,8 ]
Lei, Hechang [4 ,5 ]
Sun, Yujie [1 ,2 ,8 ,9 ]
Qian, Tian [1 ,2 ,8 ,9 ]
Ding, Hong [1 ,2 ,8 ,9 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Renmin Univ China, Dept Phys, Beijing, Peoples R China
[5] Renmin Univ China, Beijing Key Lab Optoelect Funct Mat & Micronano D, Beijing, Peoples R China
[6] Peking Univ, Beijing Key Lab Quantum Devices, State Key Lab Artificial Microstruct & Mesoscop P, Beijing, Peoples R China
[7] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai, Peoples R China
[8] Songshan Lake Mat Lab, Dongguan, Peoples R China
[9] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
SEMIMETAL; DISCOVERY;
D O I
10.1038/s41586-019-1031-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chirality-the geometric property of objects that do not coincide with their mirror image-is found in nature, for example, in molecules, crystals, galaxies and life forms. In quantum field theory, the chirality of a massless particle is defined by whether the directions of its spin and motion are parallel or antiparallel. Although massless chiral fermions-Weyl fermions-were predicted 90 years ago, their existence as fundamental particles has not been experimentally confirmed. However, their analogues have been observed as quasiparticles in condensed matter systems. In addition to Weyl fermions(1-4), theorists have proposed a number of unconventional (that is, beyond the standard model) chiral fermions in condensed matter systems(5-8), but direct experimental evidence of their existence is still lacking. Here, by using angle-resolved photoemission spectroscopy, we reveal two types of unconventional chiral fermion-spin-1 and charge-2 fermions-at the band-crossing points near the Fermi level in CoSi. The projections of these chiral fermions on the (001) surface are connected by giant Fermi arcs traversing the entire surface Brillouin zone. These chiral fermions are enforced at the centre or corner of the bulk Brillouin zone by the crystal symmetries, making CoSi a system with only one pair of chiral nodes with large separation in momentum space and extremely long surface Fermi arcs, in sharp contrast to Weyl semimetals, which have multiple pairs of Weyl nodes with small separation. Our results confirm the existence of unconventional chiral fermions and provide a platform for exploring the physical properties associated with chiral fermions.
引用
收藏
页码:496 / +
页数:5
相关论文
共 50 条
  • [21] Weyl points and Fermi arcs in a chiral phononic crystal
    Li, Feng
    Huang, Xueqin
    Lu, Jiuyang
    Ma, Jiahong
    Liu, Zhengyou
    NATURE PHYSICS, 2018, 14 (01) : 30 - +
  • [22] Tunable Weyl fermions and Fermi arcs in magnetized topological crystalline insulators
    Liu, Junwei
    Fang, Chen
    Fu, Liang
    CHINESE PHYSICS B, 2019, 28 (04)
  • [23] Chiral kagome superconductivity modulations with residual Fermi arcs
    Deng, Hanbin
    Qin, Hailang
    Liu, Guowei
    Yang, Tianyu
    Fu, Ruiqing
    Zhang, Zhongyi
    Wu, Xianxin
    Wang, Zhiwei
    Shi, Youguo
    Liu, Jinjin
    Liu, Hongxiong
    Yan, Xiao-Yu
    Song, Wei
    Xu, Xitong
    Zhao, Yuanyuan
    Yi, Mingsheng
    Xu, Gang
    Hohmann, Hendrik
    Holbaek, Sofie Castro
    Duerrnagel, Matteo
    Zhou, Sen
    Chang, Guoqing
    Yao, Yugui
    Wang, Qianghua
    Guguchia, Zurab
    Neupert, Titus
    Thomale, Ronny
    Fischer, Mark H.
    Yin, Jia-Xin
    NATURE, 2024, 632 (8026) : 775 - 781
  • [24] Fermi surface, possible unconventional fermions, and unusually robust resistive critical fields in the chiral-structured superconductor AuBe
    Rebar, Drew J.
    Birnbaum, Serena M.
    Singleton, John
    Khan, Mojammel
    Ball, J. C.
    Adams, P. W.
    Chan, Julia Y.
    Young, D. P.
    Browne, Dana A.
    DiTusa, J. F.
    PHYSICAL REVIEW B, 2019, 99 (09)
  • [25] Observation of Weyl nodes and Fermi arcs in tantalum phosphide
    N. Xu
    H. M. Weng
    B. Q. Lv
    C. E. Matt
    J. Park
    F. Bisti
    V. N. Strocov
    D. Gawryluk
    E. Pomjakushina
    K. Conder
    N. C. Plumb
    M. Radovic
    G. Autès
    O. V. Yazyev
    Z. Fang
    X. Dai
    T. Qian
    J. Mesot
    H. Ding
    M. Shi
    Nature Communications, 7
  • [26] Observation of Weyl nodes and Fermi arcs in tantalum phosphide
    Xu, N.
    Weng, H. M.
    Lv, B. Q.
    Matt, C. E.
    Park, J.
    Bisti, F.
    Strocov, V. N.
    Gawryluk, D.
    Pomjakushina, E.
    Conder, K.
    Plumb, N. C.
    Radovic, M.
    Autes, G.
    Yazyev, O. V.
    Fang, Z.
    Dai, X.
    Qian, T.
    Mesot, J.
    Ding, H.
    Shi, M.
    NATURE COMMUNICATIONS, 2016, 7
  • [27] CHIRAL FERMIONS IN GAPLESS FERMI SUPERFLUIDS AND ON VORTICES IN SUPERCONDUCTORS
    VOLOVIK, GE
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1994, 235 : 2411 - 2412
  • [28] Experimental observation of optical Weyl points and Fermi arcs
    Noh, Jiho
    Huang, Sheng
    Leykam, Daniel
    Chong, Y. D.
    Chen, Kevin
    Rechtsman, Mikael C.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [29] Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions
    Batabyal, Rajib
    Morali, Noam
    Avraham, Nurit
    Sun, Yan
    Schmidt, Marcus
    Felser, Claudia
    Stern, Ady
    Yan, Binghai
    Beidenkopf, Haim
    SCIENCE ADVANCES, 2016, 2 (08):
  • [30] Controllable Weyl nodes and Fermi arcs from Floquet engineering triple fermions
    Huang, Shengpu
    Zhan, Fangyang
    Ding, Xianyong
    Xu, Dong-Hui
    Ma, Da-Shuai
    Wang, Rui
    PHYSICAL REVIEW B, 2024, 110 (12)