Measurement of the three-dimensional microscope point spread function using a Shack-Hartmann wavefront sensor

被引:46
|
作者
Beverage, JL [1 ]
Shack, RV [1 ]
Descour, MR [1 ]
机构
[1] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA
关键词
deconvolution; fluorescence microscopy; PSF; Shack-Hartmann; spherical aberration; three-dimensional imaging; wavefront;
D O I
10.1046/j.0022-2720.2001.00973.x
中图分类号
TH742 [显微镜];
学科分类号
摘要
We present a technique to measure the wavefront in the exit pupil of a microscope to determine the microscope's three-dimensional point spread function (PSF) experimentally. The wavefront yields the microscope PSF through a Fourier transform that models propagation of light from the exit pupil to the image plane. A Shack-Hartmann wavefront sensor is used to measure the wavefront shape by recording lateral displacements of a grid of focused spots created by a lenslet array. The displacement of each spot is related to the local wavefront slope. Thus, with appropriate sampling across the exit pupil, the entire wavefront can be reconstructed. This technique does not require the use of a sub-resolution object to obtain the three-dimensional microscope PSF. Consequently, larger, brighter fluorescent objects may be imaged, thereby reducing the requirements for detector sensitivity and leading to a three-fold increase in the axial range over which the PSF is measured. The Shack-Hartmann technique results in a description of the PSF as a continuous function whose sampling is not dependent on the size of the CCD pixels. The Shack-Hartmann sensor is not limited by the numerical aperture of the objective and can easily be calibrated to measure the PSF at any wavelength.
引用
收藏
页码:61 / 75
页数:15
相关论文
共 50 条
  • [21] Aspheric metrology with a Shack-Hartmann wavefront sensor
    Greivenkamp, JE
    Smith, DG
    Gappinger, RO
    Williby, GA
    4TH IBEROAMERICAN MEETING ON OPTICS AND 7TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, 2001, 4419 : 1 - 4
  • [22] Tolerancing and compensation of a Shack-Hartmann wavefront sensor
    Smith, Daniel G.
    Greivenkamp, John E.
    OPTICAL SYSTEM ALIGNMENT AND TOLERANCING, 2007, 6676
  • [23] Shack-Hartmann wavefront sensor precision and accuracy
    Neal, DR
    Copland, J
    Neal, D
    ADVANCED CHARACTERIZATION TECHNIQUES FOR OPTICAL, SEMICONDUCTOR, AND DATA STORAGE COMPONENTS, 2002, 4779 : 148 - 160
  • [24] Wavefront characterization with a miniaturized Shack-Hartmann sensor
    Du, C
    Zurl, K
    Schwider, J
    OPTIK, 1996, 101 (04): : 151 - 156
  • [25] The Shack-Hartmann Wavefront Sensor for the Rubin Observatory
    Ballesta, Jerome
    Tison, Guillaume
    Meyer, Rafael
    Sebag, Jacques
    Thomas, Sandrine
    ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION IV, 2020, 11451
  • [26] Shack-Hartmann wavefront sensor for optical metrology
    Qi, B
    Chen, HB
    OPTICS FOR THE QUALITY OF LIFE, PTS 1 AND 2, 2003, 4829 : 910 - 911
  • [27] Wavefront characterization with a miniaturized Shack-Hartmann sensor
    Universitaet Erlangen-Nuernberg, Erlangen, Germany
    Optik (Stuttgart), 4 (151-156):
  • [28] Shack-Hartmann wavefront sensor in a convergent beam
    S. A. Potanin
    P. S. Kotlyar
    Astronomy Letters, 2006, 32 : 427 - 430
  • [29] Shack-Hartmann wavefront sensor in a convergent beam
    Potanin, S. A.
    Kotlyar, P. S.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2006, 32 (06): : 427 - 430
  • [30] Shack-Hartmann wavefront sensor with holographic memory
    Son, JY
    Podanchuk, DV
    Dan'ko, VP
    Kwak, KD
    OPTICAL ENGINEERING, 2003, 42 (11) : 3389 - 3398