Comparing temporal graphs using dynamic time warping

被引:3
|
作者
Froese, Vincent [1 ]
Jain, Brijnesh [2 ]
Niedermeier, Rolf [1 ]
Renken, Malte [1 ]
机构
[1] Tech Univ Berlin, Fac Algorithm & Computat Complex 4, Berlin, Germany
[2] Tech Univ Berlin, Fac Distributed Artificial Intelligence Lab 4, Berlin, Germany
关键词
Temporal graph matching; Vertex signatures; Heuristic optimization; Quadratic programming; Parameterized algorithms; MULTIVARIATE ALGORITHMICS; COMPLEXITY;
D O I
10.1007/s13278-020-00664-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Within many real-world networks, the links between pairs of nodes change over time. Thus, there has been a recent boom in studying temporal graphs. Recognizing patterns in temporal graphs requires a proximity measure to compare different temporal graphs. To this end, we propose to study dynamic time warping on temporal graphs. We define the dynamic temporal graph warping (dtgw) distance to determine the dissimilarity of two temporal graphs. Our novel measure is flexible and can be applied in various application domains. We show that computing the dtgw-distance is a challenging (in general) NP-hard optimization problem and identify some polynomial-time solvable special cases. Moreover, we develop a quadratic programming formulation and an efficient heuristic. In experiments on real-world data, we show that the heuristic performs very well and that our dtgw-distance performs favorably in de-anonymizing networks compared to other approaches.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Anomaly Detection Using Dynamic Time Warping
    Diab, Diab M.
    AsSadhan, Basil
    Binsalleeh, Hamad
    Lambotharan, Sangarapillai
    Kyriakopoulos, Konstantinos G.
    Ghafir, Ibrahim
    2019 22ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (IEEE CSE 2019) AND 17TH IEEE INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (IEEE EUC 2019), 2019, : 199 - 204
  • [22] Dynamic Dynamic Time Warping
    Bringmann, Karl
    Fischer, Nick
    van der Hoog, Ivor
    Kipouridis, Evangelos
    Kociumaka, Tomasz
    Rotenberg, Eva
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 208 - 242
  • [23] Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel
    Ahmed, Rehan
    Temko, Andriy
    Marnane, William P.
    Boylan, Geraldine
    Lightbody, Gordon
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 82 : 100 - 110
  • [24] MODIFIED DYNAMIC TIME WARPING (MDTW) FOR ESTIMATING TEMPORAL DIETARY PATTERNS
    Khanna, Nitin
    Eicher-Miller, Heather A.
    Verma, Hemant K.
    Boushey, Carol J.
    Gelfand, Saul B.
    Delp, Edward J.
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 948 - 952
  • [25] DYNAMIC POSITIONAL WARPING: DYNAMIC TIME WARPING FOR ONLINE HANDWRITING
    Chang, Won-Du
    Shin, Jungpil
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2009, 23 (05) : 967 - 986
  • [26] Alignment Using Variable Penalty Dynamic Time Warping
    Clifford, David
    Stone, Glenn
    Montoliu, Ivan
    Rezzi, Serge
    Martin, Francois-Pierre
    Guy, Philippe
    Bruce, Stephen
    Kochhar, Sunil
    ANALYTICAL CHEMISTRY, 2009, 81 (03) : 1000 - 1007
  • [27] Synchronization of batch trajectories using dynamic time warping
    Kassidas, A
    MacGregor, JF
    Taylor, PA
    AICHE JOURNAL, 1998, 44 (04) : 864 - 875
  • [28] ECG frame classification using dynamic time warping
    Huang, B
    Kinsner, W
    IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 1105 - 1110
  • [29] Denial of service detection using dynamic time warping
    Diab, Diab M.
    AsSadhan, Basil
    Binsalleeh, Hamad
    Lambotharan, Sangarapillai
    Kyriakopoulos, Konstantinos G.
    Ghafir, Ibrahim
    INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, 2021, 31 (06)
  • [30] Word image matching using dynamic time warping
    Rath, TM
    Manmatha, R
    2003 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2003, : 521 - 527