Logarithmically-Concave Moment Measures I

被引:15
|
作者
Klartag, Bo'az [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会;
关键词
CONVEX-BODIES; TRANSPORTATION;
D O I
10.1007/978-3-319-09477-9_16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a certain Riemannian metric, related to the toric Kahler-Einstein equation, that is associated in a linearly-invariant manner with a given log-concave measure in R-n. We use this metric in order to bound the second derivatives of the solution to the toric Kahler-Einstein equation, and in order to obtain spectral-gap estimates similar to those of Payne and Weinberger.
引用
收藏
页码:231 / 260
页数:30
相关论文
共 50 条
  • [41] DUAL CURVATURE MEASURES FOR LOG-CONCAVE FUNCTIONS
    Huang, Yong
    Liu, Jiaqian
    Xi, Dongmeng
    Zhao, Yiming
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 128 (02) : 815 - 860
  • [42] On the Equivalence of Modes of Convergence for Log-Concave Measures
    Meckes, Elizabeth S.
    Meckes, Mark W.
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2011-2013, 2014, 2116 : 385 - 394
  • [43] Surface area measures of log-concave functions
    Liran Rotem
    Journal d'Analyse Mathématique, 2022, 147 : 373 - 400
  • [44] On the existence of subgaussian directions for log-concave measures
    Giannopoulos, A.
    Paouris, G.
    Valettas, P.
    CONCENTRATION, FUNCTIONAL INEQUALITIES AND ISOPERIMETRY, 2011, 545 : 103 - +
  • [45] Improving the reliability and accuracy of population receptive field measures using a logarithmically warped stimulus
    Chang, Kelly
    Fine, Ione
    Boynton, Geoffrey M.
    JOURNAL OF VISION, 2025, 25 (01):
  • [46] Measures with zeros in the inverse of their moment matrix
    Helton, J. William
    Lasserre, Jean B.
    Putinar, Mihai
    ANNALS OF PROBABILITY, 2008, 36 (04): : 1453 - 1471
  • [47] A moment problem for random discrete measures
    Kondratiev, Yuri G.
    Kuna, Tobias
    Lytvynov, Eugene
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (09) : 3541 - 3569
  • [48] Moment Inequalities for Equilibrium Measures in the Plane
    Baernstein, A., II
    Laugesen, R. S.
    Pritsker, I. E.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (01) : 51 - 86
  • [49] On moment functionals with signed representing measures
    Schmuedgen, Konrad
    EXPOSITIONES MATHEMATICAE, 2025, 43 (03)
  • [50] Bounds on measures satisfying moment conditions
    Lasserre, JB
    ANNALS OF APPLIED PROBABILITY, 2002, 12 (03): : 1114 - 1137