Silicon mirror suspensions for gravitational wave detectors

被引:31
|
作者
Cumming, A. V. [1 ]
Cunningham, L. [1 ]
Hammond, G. D. [1 ]
Haughian, K. [1 ]
Hough, J. [1 ]
Kroker, S. [2 ]
Martin, I. W. [1 ]
Nawrodt, R. [2 ]
Rowan, S. [1 ]
Schwarz, C. [3 ]
van Veggel, A. A. [1 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, Inst Gravitat Res, Scottish Univ Phys Alliance, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Jena, Inst Angew Phys, Abbe Ctr Photon, D-07743 Jena, Germany
[3] Univ Jena, Inst Festkorperphys, D-07743 Jena, Germany
基金
英国科学技术设施理事会;
关键词
gravitational; wave; suspension; silicon; strength; cryogenic; TEST MASS SUSPENSION; THERMAL NOISE; INTERNAL-FRICTION; LOW-TEMPERATURES; QUALITY FACTOR; FUSED-SILICA; DISSIPATION; FRACTURE; CRYSTALS; PENDULUM;
D O I
10.1088/0264-9381/31/2/025017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
One of the most significant limits to the sensitivity of current, and future, long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test masses and their suspensions. This paper reports results of analytical and experimental studies of the limits to thermal noise performance of cryogenic silicon test mass suspensions set by two constraints on suspension fibre dimensions: the minimum dimensions required to allow conductive cooling for extracting incident laser beam heat deposited in the mirrors; and the minimum dimensions of fibres (set by their tensile strength) which can support test masses of the size envisaged for use in future detectors. We report experimental studies of breaking strength of silicon ribbons, and resulting design implications for the feasibility of suspension designs for future gravitational wave detectors using silicon suspension fibres. We analyse the implication of this study for thermal noise performance of cryogenically cooled silicon suspensions.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors
    Cumming, A.
    Jones, R.
    Barton, M.
    Cagnoli, G.
    Cantley, C. A.
    Crooks, D. R. M.
    Hammond, G. D.
    Heptonstall, A.
    Hough, J.
    Rowan, S.
    Strain, K. A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (04):
  • [22] Breaking strength tests on silicon and sapphire bondings for gravitational wave detectors
    Dari, A.
    Travasso, F.
    Vocca, H.
    Gammaitoni, L.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (04)
  • [23] Thermal motion associated with monolithic fused silica cradle suspensions for gravitational wave detectors
    Logan, JE
    Hough, J
    Thomson, RD
    PHYSICS LETTERS A, 1996, 218 (3-6) : 181 - 189
  • [24] Study of parametric instability in gravitational wave detectors with silicon test masses
    Zhang, Jue
    Zhao, Chunnong
    Ju, Li
    Blair, David
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (05)
  • [25] Non-stoichiometric silicon nitride for future gravitational wave detectors
    Wallace, G. S.
    Yaala, M. Ben
    Tait, S. C.
    Vajente, G.
    Mccanny, T.
    Clark, C.
    Gibson, D.
    Hough, J.
    Martin, I. W.
    Rowan, S.
    Reid, S.
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (09)
  • [26] Coupling of mirror tilts with earth gravitational field in long-baseline interferometric gravitational-wave detectors
    Calloni, E
    Di Fiore, L
    Di Sciascio, G
    Milano, L
    Rosa, L
    Stornaiolo, C
    PHYSICS LETTERS A, 2000, 268 (4-6) : 235 - 240
  • [27] Numerical Tool for Calculating Birefringence in Mirror-Substrates for Gravitational-Wave Detectors
    Zeidler, Simon
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
  • [28] Simulation of gravitational wave detectors
    deRonde, JF
    vanAlbada, GD
    Sloot, PMA
    COMPUTERS IN PHYSICS, 1997, 11 (05): : 484 - 497
  • [29] Interferometric gravitational wave detectors
    Barish, BC
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 138 : 510 - 517
  • [30] Status of gravitational wave detectors
    Saulson, Peter R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 572 (01): : 528 - 530