Silicon mirror suspensions for gravitational wave detectors

被引:31
|
作者
Cumming, A. V. [1 ]
Cunningham, L. [1 ]
Hammond, G. D. [1 ]
Haughian, K. [1 ]
Hough, J. [1 ]
Kroker, S. [2 ]
Martin, I. W. [1 ]
Nawrodt, R. [2 ]
Rowan, S. [1 ]
Schwarz, C. [3 ]
van Veggel, A. A. [1 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, Inst Gravitat Res, Scottish Univ Phys Alliance, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Jena, Inst Angew Phys, Abbe Ctr Photon, D-07743 Jena, Germany
[3] Univ Jena, Inst Festkorperphys, D-07743 Jena, Germany
基金
英国科学技术设施理事会;
关键词
gravitational; wave; suspension; silicon; strength; cryogenic; TEST MASS SUSPENSION; THERMAL NOISE; INTERNAL-FRICTION; LOW-TEMPERATURES; QUALITY FACTOR; FUSED-SILICA; DISSIPATION; FRACTURE; CRYSTALS; PENDULUM;
D O I
10.1088/0264-9381/31/2/025017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
One of the most significant limits to the sensitivity of current, and future, long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test masses and their suspensions. This paper reports results of analytical and experimental studies of the limits to thermal noise performance of cryogenic silicon test mass suspensions set by two constraints on suspension fibre dimensions: the minimum dimensions required to allow conductive cooling for extracting incident laser beam heat deposited in the mirrors; and the minimum dimensions of fibres (set by their tensile strength) which can support test masses of the size envisaged for use in future detectors. We report experimental studies of breaking strength of silicon ribbons, and resulting design implications for the feasibility of suspension designs for future gravitational wave detectors using silicon suspension fibres. We analyse the implication of this study for thermal noise performance of cryogenically cooled silicon suspensions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Damping and local control of mirror suspensions for laser interferometric gravitational wave detectors
    Strain, K. A.
    Shapiro, B. N.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (04):
  • [2] Development of Mirror Coatings for Gravitational Wave Detectors
    Reid, Stuart
    Martin, Iain W.
    COATINGS, 2016, 6 (04)
  • [3] Mirror Coatings for new generation Gravitational Wave Detectors
    Fabrizi, F.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2025, 48 (03):
  • [4] Development of mirror coatings for gravitational-wave detectors
    Steinlechner, J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2120):
  • [5] The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors
    Sneddon, PH
    Bull, S
    Cagnoli, G
    Crooks, DRM
    Elliffe, EJ
    Faller, JE
    Fejer, MM
    Hough, J
    Rowan, S
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (23) : 5025 - 5037
  • [6] ULTRAHIGH Q PENDULUM SUSPENSIONS FOR GRAVITATIONAL-WAVE DETECTORS
    BLAIR, DG
    JU, L
    NOTCUTT, M
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1993, 64 (07): : 1899 - 1904
  • [7] MIRROR THERMAL NOISE IN INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTORS
    BONDU, F
    VINET, JY
    PHYSICS LETTERS A, 1995, 198 (02) : 74 - 78
  • [8] Finite mirror effects in advanced interferometric gravitational wave detectors
    Lundgren, Andrew P.
    Bondarescu, Ruxandra
    Tsang, David
    Bondarescu, Mihai
    PHYSICAL REVIEW D, 2008, 77 (04):
  • [9] Quasi-monolithic mirror suspensions in ground-based gravitational-wave detectors: an overview and look to the future
    van Veggel, Anna-Maria A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2120):
  • [10] Optimization of multipendular seismic suspensions for interferometric gravitational-wave detectors
    Bove, A.
    Di Fiore, L.
    Calloni, E.
    Grado, A.
    Europhysics Letters, 40 (06):