A three-dimensional printed cell for rapid, low-volume spectroelectrochemistry

被引:17
|
作者
Brisendine, Joseph M. [1 ]
Mutter, Andrew C. [1 ]
Cerda, Jose F. [2 ]
Koder, Ronald L. [1 ,3 ,4 ,5 ,6 ]
机构
[1] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[2] St Josephs Univ, Dept Chem, Philadelphia, PA 19131 USA
[3] CUNY, Grad Ctr, Grad Program Phys, New York, NY 10016 USA
[4] CUNY, Grad Ctr, Grad Program Chem, New York, NY 10016 USA
[5] CUNY, Grad Ctr, Grad Program Biochem, New York, NY 10016 USA
[6] CUNY, Grad Ctr, Grad Program Biol, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
Safranine; Spectroelectrochemistry; Reduction potential; 3D printing; CYTOCHROME-C; THIN-LAYER; PROTEIN; COFACTOR;
D O I
10.1016/j.ab.2013.03.036
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We have used three-dimensional (3D) printing technology to create an inexpensive spectroelectrochemical cell insert that fits inside a standard cuvette and can be used with any transmission spectrometer. The cell positions the working, counter, and reference electrodes and has an interior volume of approximately 200 mu l while simultaneously providing a full 1-cm path length for spectroscopic measurements. This method reduces the time required to perform a potentiometric titration on a molecule compared with standard chemical titration methods and achieves complete electrolysis of protein samples within minutes. Thus, the device combines the best aspects of thin-layer cells and standard potentiometry. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 50 条
  • [41] Three-Dimensional Printed Ergonomically Improved Microforceps for Microneurosurgery
    Singh, Ramandeep
    Suri, Ashish
    WORLD NEUROSURGERY, 2020, 141 : E271 - E277
  • [42] Three-Dimensional Printed Nanocomposites with Tunable Piezoresistive Response
    Aliberti, Francesca
    Guadagno, Liberata
    Longo, Raffaele
    Raimondo, Marialuigia
    Pantani, Roberto
    Sorrentino, Andrea
    Catauro, Michelina
    Vertuccio, Luigi
    NANOMATERIALS, 2024, 14 (21)
  • [43] Quantitative evaluation of performance of three-dimensional printed lenses
    Gawedzinski, John
    Pawlowski, Michal E.
    Tkaczyk, Tomasz S.
    OPTICAL ENGINEERING, 2017, 56 (08)
  • [44] Three-dimensional integrated circuit using printed electronics
    Huebler, A. C.
    Schmidt, G. C.
    Kempa, H.
    Reuter, K.
    Hambsch, M.
    Bellmann, M.
    ORGANIC ELECTRONICS, 2011, 12 (03) : 419 - 423
  • [45] Microfluidic Frequency Tunable Three-Dimensional Printed Antenna
    Wang, Fengzhou
    Arslan, Tughrul
    2017 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2017,
  • [46] Three-dimensional printed models in congenital heart disease
    Cantinotti, Massimiliano
    Valverde, Israel
    Kutty, Shelby
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2017, 33 (01): : 137 - 144
  • [47] Validation of three-dimensional printed models of intracranial aneurysms
    Mantilla, Daniel E.
    Ferrara, Riccardo
    Ortiz, Andres F.
    Vera, Daniela D.
    Nicoud, Franck
    Costalat, Vincent
    INTERVENTIONAL NEURORADIOLOGY, 2024, 30 (05) : 712 - 719
  • [48] Three-Dimensional Printed Cellulose for Wound Dressing Applications
    Fahma, Farah
    Firmanda, Afrinal
    Cabral, Jaydee
    Pletzer, Daniel
    Fisher, John
    Mahadik, Bhushan
    Arnata, I. Wayan
    Sartika, Dewi
    Wulandari, Anting
    3D PRINTING AND ADDITIVE MANUFACTURING, 2023, 10 (05) : 1015 - 1035
  • [49] Broadening the scope for three-dimensional printed airway stents
    van Beelen, Sophia
    Smesseim, Illaa
    Guibert, Nicolas
    Wijma, Inge
    Burgers, Sjaak
    ERJ OPEN RESEARCH, 2023, 9 (02)
  • [50] Mechanics of Three-Dimensional Printed Lattices for Biomedical Devices
    Egan, Paul F.
    Bauer, Isabella
    Shea, Kristina
    Ferguson, Stephen J.
    JOURNAL OF MECHANICAL DESIGN, 2019, 141 (03)