A three-dimensional printed cell for rapid, low-volume spectroelectrochemistry

被引:17
|
作者
Brisendine, Joseph M. [1 ]
Mutter, Andrew C. [1 ]
Cerda, Jose F. [2 ]
Koder, Ronald L. [1 ,3 ,4 ,5 ,6 ]
机构
[1] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[2] St Josephs Univ, Dept Chem, Philadelphia, PA 19131 USA
[3] CUNY, Grad Ctr, Grad Program Phys, New York, NY 10016 USA
[4] CUNY, Grad Ctr, Grad Program Chem, New York, NY 10016 USA
[5] CUNY, Grad Ctr, Grad Program Biochem, New York, NY 10016 USA
[6] CUNY, Grad Ctr, Grad Program Biol, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
Safranine; Spectroelectrochemistry; Reduction potential; 3D printing; CYTOCHROME-C; THIN-LAYER; PROTEIN; COFACTOR;
D O I
10.1016/j.ab.2013.03.036
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We have used three-dimensional (3D) printing technology to create an inexpensive spectroelectrochemical cell insert that fits inside a standard cuvette and can be used with any transmission spectrometer. The cell positions the working, counter, and reference electrodes and has an interior volume of approximately 200 mu l while simultaneously providing a full 1-cm path length for spectroscopic measurements. This method reduces the time required to perform a potentiometric titration on a molecule compared with standard chemical titration methods and achieves complete electrolysis of protein samples within minutes. Thus, the device combines the best aspects of thin-layer cells and standard potentiometry. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 3
页数:3
相关论文
共 50 条
  • [1] Naked Liquid Marbles: A Robust Three-Dimensional Low-Volume Cell-Culturing System
    Chen, Mo
    Shah, Megha P.
    Shelper, Todd B.
    Nazareth, Lynn
    Barker, Matthew
    Velasquez, Johana Tello
    Ekberg, Jenny A. K.
    Vial, Marie-Laure
    St John, James A.
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) : 9814 - 9823
  • [2] Versatile, low-volume, thin-layer cell for in situ spectroelectrochemistry
    MosierBoss, PA
    Newbery, R
    Szpak, S
    Lieberman, SH
    Rovang, JW
    ANALYTICAL CHEMISTRY, 1996, 68 (18) : 3277 - 3282
  • [3] Rapid-printed Three-dimensional Models for Craniomaxillofacial Trauma
    Scharf, Isabel M.
    Mathis, Sydney A.
    Zeid, Naji Bou
    Saini, Devansh
    Nahass, George R.
    Arias, Eduardo
    Purnell, Chad A.
    Zhao, Linping
    Patel, Pravin K.
    Alkureishi, Lee W. T.
    PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN, 2024, 12 (11)
  • [4] Three-dimensional printed electronics
    Jennifer A. Lewis
    Bok Y. Ahn
    Nature, 2015, 518 : 42 - 43
  • [5] Three-dimensional ultrasound device for rapid determination of bladder volume
    Marks, LS
    Dorey, FJ
    Macairan, ML
    Park, C
    deKernion, JB
    UROLOGY, 1997, 50 (03) : 341 - 348
  • [6] Three-dimensional printed electronics
    Lewis, Jennifer A.
    Ahn, Bok Y.
    NATURE, 2015, 518 (7537) : 42 - 43
  • [7] Assembling a Low-volume Biofuel Cell on a Screen-printed Electrode for Glucose Sensing
    Becker, Jana M.
    Lielpetere, Anna
    Szczesny, Julian
    Ruff, Adrian
    Conzuelo, Felipe
    Schuhmann, Wolfgang
    ELECTROANALYSIS, 2022, 34 (10) : 1629 - 1637
  • [8] Three-Dimensional Printed Hysteria
    Hassan, Karriem
    3D PRINTING AND ADDITIVE MANUFACTURING, 2020, 7 (02) : 45 - 47
  • [9] Rapid Access to Multicolor Three-Dimensional Printed Chemistry and Biochemistry Models Using Visualization and Three-Dimensional Printing Software Programs
    Van Wieren, Ken
    Tailor, Hamel N.
    Scalfani, Vincent F.
    Merbouh, Nabyl
    JOURNAL OF CHEMICAL EDUCATION, 2017, 94 (07) : 964 - 969
  • [10] Three-dimensional metrology for printed electronics
    Bromberg, Vadim
    Harding, Kevin
    DIMENSIONAL OPTICAL METROLOGY AND INSPECTION FOR PRACTICAL APPLICATIONS VI, 2017, 10220