On the coefficients of the Coxeter polynomial of an accessible algebra

被引:2
|
作者
de la Pena, Jose A. [1 ,2 ]
机构
[1] Ctr Invest Matemat AC, Guanajuato 36240, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
关键词
Finite dimensional algebra; Accessible algebra; Exceptional modules; Coxeter polynomial; FINITE-DIMENSIONAL ALGEBRAS;
D O I
10.1016/j.jalgebra.2012.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a finite dimensional algebra over an algebraically closed field k. Assume A is basic connected with n pairwise non-isomorphic simple modules. We consider the Coxeter polynomial chi(A)(T) of a one-point extension algebra A = B[M] and the polynomial of the extension p(T) = 1/T((1 + T))chi(B)(T) - chi(A)(T)). If M is exceptional then p(T) = 1 + p(1) T + ... + p(n-3)T(n-3) + Tn-2. In that case, we call s(A : B) = p(1) the linear index of the extension A = B[M]. We give conditions for s(A : B) >= 0. For a tower T = (k = A(1), A(2), ..., A(n) = A) of access to A, that is, A(i) is a one-point (co-)extension of A(i-1) by an exceptional module, the index s(T) = Sigma((n)(i=2) s(A(i) : A(i-1)) = n - 1 - a(2), is an invariant depending on the derived equivalence class of A, where a(2) is the quadratic coefficient of chi(A)(T). We show that, in the case A is piecewise hereditary, then a(2) = 1 if and only if A is derived equivalent to a quiver algebra of type A(n). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 50 条
  • [21] Combinatorial properties of the Temperley–Lieb algebra of a Coxeter group
    Alfonso Pesiri
    [J]. Journal of Algebraic Combinatorics, 2013, 37 : 717 - 736
  • [22] Four coefficients of characteristic polynomials of coxeter transformations
    Kolmykov, VA
    Men'shikh, VV
    Subbotin, VF
    Surnin, MV
    [J]. MATHEMATICAL NOTES, 2003, 73 (5-6) : 742 - 746
  • [23] On the Mahler measure of the Coxeter polynomial of tensor products of algebras
    de la Pena, Jose A.
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2014, 20 (02): : 257 - 275
  • [24] ACCESSIBLE POINTS IN SPECTRUM OF A FRECHET ALGEBRA
    CARPENTER, RL
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 63 (01) : 101 - 106
  • [25] On the Mahler measure of the Coxeter polynomial of tensor products of algebras
    José A. de la Peña
    [J]. Boletín de la Sociedad Matemática Mexicana, 2014, 20 (2) : 257 - 275
  • [26] Polynomial algebra for Birkhoff interpolants
    Butcher, John C.
    Corless, Robert M.
    Gonzalez-Vega, Laureano
    Shakoori, Azar
    [J]. NUMERICAL ALGORITHMS, 2011, 56 (03) : 319 - 347
  • [27] Polynomial Algebra in Form 4
    Kuipers, J.
    [J]. 14TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT 2011), 2012, 368
  • [28] The Basic Polynomial Algebra Subprograms
    Chen, Changbo
    Covanov, Svyatoslav
    Mansouri, Farnam
    Moir, Robert H. C.
    Maza, Marc Moreno
    Xie, Ning
    Xie, Yuzhen
    [J]. ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2016, 50 (03): : 97 - 100
  • [29] Polynomial invariants by linear algebra
    [J]. de Oliveira, Steven (steven.deoliveira@cea.fr), 1600, Springer Verlag (9938 LNCS):
  • [30] Polynomial Invariants by Linear Algebra
    de Oliveira, Steven
    Bensalem, Saddek
    Prevosto, Virgile
    [J]. AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, ATVA 2016, 2016, 9938 : 479 - 494