Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Optical Fiber Sensors

被引:1
|
作者
Stoddart, Paul R. [1 ]
Jayawardhana, S. [1 ]
机构
[1] Swinburne Univ Technol, Ctr Atom Opt & Ultrafast Spect, Hawthorn, Vic 3122, Australia
关键词
surface-enhanced Raman scattering; optical fiber sensors; nanofabrication; SILVER NANOROD ARRAYS; OBLIQUE ANGLE DEPOSITION; SERS SENSORS; NANOSTRUCTURES; SPECTROSCOPY; FABRICATION; FACET;
D O I
10.1117/12.2004019
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface-enhanced Raman scattering (SERS) allows the detection of sub-monolayer adsorbates on nanostructured metal surfaces (typically gold or silver). The technique has generated interest for applications in biosensing, high-resolution chemical mapping and surface science. SERS is generated by the localized surface plasmon resonance that occurs when the nano-metal is exposed to laser light. These plasmonic effects rely on features as small as similar to 1 nm, which poses a challenge for the fabrication of sensitive and reproducible substrates. Consequently a wide range of nanofabrication techniques have been used to make SERS substrates. Further challenges are encountered when transferring wafer-scale techniques to the tips of optical fibers in order to produce devices for in vivo SERS sensing. Here we describe fiber tip substrates based on miniaturization by fiber drawing, physical vapor deposition and nanoimprint lithography. Despite recent progress, the fabrication of sensitive, reproducible and affordable SERS fiber sensors remains an unresolved problem.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Fabrication of novel layered substrates for surface-enhanced Raman scattering
    Daniels, JK
    Chumanov, G
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U237 - U238
  • [32] Nanoporous silver nanorods as surface-enhanced Raman scattering substrates
    Chen, Qiuyan
    Zhao, Liyan
    Liu, Hong
    Ding, Qianqian
    Jia, Chenghao
    Liao, Sihao
    Cheng, Ningtao
    Yue, Min
    Yang, Shikuan
    BIOSENSORS & BIOELECTRONICS, 2022, 202
  • [33] Laser fabricated ripple substrates for surface-enhanced Raman scattering
    Buividas, Ricardas
    Stoddart, Paul R.
    Juodkazis, Saulius
    ANNALEN DER PHYSIK, 2012, 524 (11) : L5 - L10
  • [34] Preparation of metal oxide substrates for surface-enhanced Raman scattering
    Li, Bing-Han
    Weng, Cheng-Yu
    Yang, Chung-Chun
    Lin, Chia-Her
    Lee, Szetsen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [35] Silver fractal networks for surface-enhanced Raman scattering substrates
    Qiu, T.
    Wu, X. L.
    Shen, J. C.
    Xia, Y.
    Shen, P. N.
    Chu, Paul K.
    APPLIED SURFACE SCIENCE, 2008, 254 (17) : 5399 - 5402
  • [36] Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS)
    Brown, Richard J. C.
    Milton, Martin J. T.
    JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (10) : 1313 - 1326
  • [37] Direct Laser Annealing of Surface-Enhanced Raman Scattering Substrates
    Cao, Bolun
    Mu, Yunyun
    Zhang, Xinping
    ADVANCED ENGINEERING MATERIALS, 2019, 21 (12)
  • [38] Intracellular pH sensors based on surface-enhanced Raman scattering
    Talley, CE
    Jusinski, L
    Hollars, CW
    Lane, SM
    Huser, T
    ANALYTICAL CHEMISTRY, 2004, 76 (23) : 7064 - 7068
  • [39] The Need for Benchmarking Surface-Enhanced Raman Scattering (SERS) Sensors
    Masson, Jean-Francois
    ACS SENSORS, 2021, 6 (11): : 3822 - 3823
  • [40] Optical Fiber Probe with Integrated Micro-Optical Filter for Raman and Surface-Enhanced Raman Scattering Sensing
    Al Mamun, Md Abdullah
    Katkus, Tomas
    Mahadevan-Jansen, Anita
    Juodkazis, Saulius
    Stoddart, Paul R.
    NANOMATERIALS, 2024, 14 (16)