Three-dimensional corner eddies in Stokes flow

被引:1
|
作者
Davis, Anthony M. J. [1 ]
Smith, Stefan G. Llewellyn [1 ]
机构
[1] Univ Calif San Diego, Jacobs Sch Engn, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
关键词
SEPARATION; CAVITY; FLUID; PLANE;
D O I
10.1088/0169-5983/46/1/015509
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Vortices exist in wedge-shaped corners in Stokes flow. In seeking an analogous eigensolution structure in three dimensions, an analytic construction is derived for a rectangular corner. This restriction mirrors the only corner type for which computed streamlines are available for comparison and explanation. The dominant eigenvalue is complex, giving rise to localized eddies. Hence trapped fluid is predicted near the corner.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] The evolution of a three-dimensional microbubble at a corner in a Maxwell fluid
    O'Brien, E. N.
    Mahmud, M.
    Smith, W. R.
    Wang, Q. X.
    Phillips, T. N.
    PHYSICS OF FLUIDS, 2023, 35 (10)
  • [32] Octupole corner state in a three-dimensional topological circuit
    Shuo Liu
    Shaojie Ma
    Qian Zhang
    Lei Zhang
    Cheng Yang
    Oubo You
    Wenlong Gao
    Yuanjiang Xiang
    Tie Jun Cui
    Shuang Zhang
    Light: Science & Applications, 9
  • [33] An anatomical three-dimensional study of the posteromedial corner of the knee
    Moises Cohen
    Diego Costa Astur
    Rodrigo Castelo Branco
    Ricardo de Souza Campos Fernandes
    Camila Cohen Kaleka
    Gustavo Gonçalves Arliani
    Wahy Jalikjian
    Pau Golano
    Knee Surgery, Sports Traumatology, Arthroscopy, 2011, 19
  • [34] Derivation of vortex method from Navier-Stokes equations (three-dimensional flow)
    Nakajima, Tomoya
    Kida, Teruhiko
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1995, 61 (592): : 25 - 30
  • [35] Convergence and conditioning of a Nyström method for Stokes flow in exterior three-dimensional domains
    J. Li
    O. Gonzalez
    Advances in Computational Mathematics, 2013, 39 : 143 - 174
  • [37] Converging three-dimensional stokes flow of two fluids in a T-type bifurcation
    Ong, Joseph
    Enden, Giora
    Popel, Aleksander S.
    Journal of Fluid Mechanics, 1994, 270 : 51 - 71
  • [38] The Stokes Limit in a Three-Dimensional Chemotaxis-Navier–Stokes System
    Tobias Black
    Journal of Mathematical Fluid Mechanics, 2020, 22
  • [39] The Stokes Limit in a Three-Dimensional Keller–Segel–Navier–Stokes System
    Ju Zhou
    Journal of Dynamics and Differential Equations, 2023, 35 : 2157 - 2184
  • [40] Three-dimensional scene flow
    Vedula, S
    Baker, S
    Rander, P
    Collins, R
    Kanade, T
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (03) : 475 - 480