Crystal alignment of a LiNi0.5Mn0.3Co0.2O2 electrode material for lithium ion batteries using its magnetic properties

被引:15
|
作者
Kim, Cham [1 ]
Yang, Yeokyung [1 ]
Lopez, David Humberto [2 ]
Ha, Dongwoo [3 ]
机构
[1] Daegu Gyeongbuk Inst Sci & Technol DGIST, 333 Techno Jungang Daero, Daegu 42988, South Korea
[2] Univ Arizona, Dept Chem & Environm Engn, 1133 E James E Rogers Way, Tucson, AZ 85721 USA
[3] Korea Electrotechnol Res Inst KERI, 12 Bulmosan Ro 1Obeon Gil, Chang Won 51543, Gyeongsangnam D, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; CATHODE MATERIALS; THICK ELECTRODES; PERFORMANCE; INTERCALATION; DIFFUSION; ENERGY; ANODE;
D O I
10.1063/5.0016456
中图分类号
O59 [应用物理学];
学科分类号
摘要
We studied technology that enables the crystal alignment of LiNi0.5Mn0.3Co0.2O2 using its magnetic properties. LiNi0.5Mn0.3Co0.2O2 exhibited either antiferromagnetic or paramagnetic behavior depending on temperature as well as magnetic anisotropy originated from its crystallographic anisotropy. Based on these magnetic characteristics, we adjusted the vector quantity of an external magnetic field and applied it to LiNi0.5Mn0.3Co0.2O2 crystals, thus producing crystal-aligned LiNi0.5Mn0.3Co0.2O2 electrodes. In these electrodes, the (001) plane was oriented comparatively perpendicular to the surface of a current collector. Due to the intrinsic lithium ion transport kinetics in LiNi0.5Mn0.3Co0.2O2 along the (001) plane, aligned LiNi0.5Mn0.3Co0.2O2 may contribute to enhancing lithium ion conduction during the charge/discharge process in a lithium ion battery, resulting in improved electrochemical performance. Published under license by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Acacia gum-assisted co-precipitating synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries
    Zhen Zhang
    Shengrong Zhu
    Jindou Huang
    Chunmiao Yan
    Ionics, 2016, 22 : 621 - 627
  • [42] Regenerating of LiNi0.5Co0.2Mn0.3O2 cathode materials from spent lithium-ion batteries
    Jian Li
    Leshan Hu
    Hongming Zhou
    Lihua Wang
    Bingkun Zhai
    Shengliang Yang
    Pengyu Meng
    Rong Hu
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 17661 - 17669
  • [43] Acacia gum-assisted co-precipitating synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries
    Zhang, Zhen
    Zhu, Shengrong
    Huang, Jindou
    Yan, Chunmiao
    IONICS, 2016, 22 (05) : 621 - 627
  • [44] Effect of Electrolyte Additives on the LiNi0.5Mn0.3Co0.2O2 Surface Film Formation with Lithium and Graphite Negative Electrodes
    Hekmatfar, Maral
    Hasa, Ivana
    Eghbal, Ramtin
    Carvalho, Diogo V.
    Moretti, Arianna
    Passerini, Stefano
    ADVANCED MATERIALS INTERFACES, 2020, 7 (01)
  • [45] Comparison of monocrystalline and secondary LiNi0.5Co0.2Mn0.3O2 cathode material for high-performance lithium-ion batteries
    Cheng, Lei
    Zhang, Bao
    Su, Shi-Lin
    Ming, Lei
    Zhao, Yi
    Wang, Chun-Hui
    Ou, Xing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 845 (845)
  • [46] Single-crystal LiNi0.5Co0.2Mn0.3O2: a high thermal and cycling stable cathodes for lithium-ion batteries
    Zeqin Zhong
    Lingzhen Chen
    Shaozhen Huang
    Weili Shang
    Lingyong Kong
    Ming Sun
    Lei Chen
    Wangbao Ren
    Journal of Materials Science, 2020, 55 : 2913 - 2922
  • [47] Single-crystal LiNi0.5Co0.2Mn0.3O2: a high thermal and cycling stable cathodes for lithium-ion batteries
    Zhong, Zeqin
    Chen, Lingzhen
    Huang, Shaozhen
    Shang, Weili
    Kong, Lingyong
    Sun, Ming
    Chen, Lei
    Ren, Wangbao
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (07) : 2913 - 2922
  • [48] Effects of Li2SiO3 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries
    Hu, Guorong
    Zhang, Manfang
    Wu, Lili
    Peng, Zhongdong
    Du, Ke
    Cao, Yanbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 690 : 589 - 597
  • [49] Effect of Sonication Power on Al2O3 Coated LiNi0.5Mn0.3Co0.2O2 Cathode Material for LIB
    Sivlin, Dila
    Keles, Ozgul
    ENERGY TECHNOLOGY 2018: CARBON DIOXIDE MANAGEMENT AND OTHER TECHNOLOGIES, 2018, : 515 - 522
  • [50] Recovery of LiNi0.5Mn0.3Co0.2O2 cathode material from spent lithium-ion batteries with oxygen evolution reduction in ammonium sulfate low-temperature molten salt
    He, Shichao
    Zhou, Ao
    Jiang, Tao
    Liu, Zhihong
    JOURNAL OF CLEANER PRODUCTION, 2023, 422