A Time Series Approach for Soil Moisture Estimation

被引:1
|
作者
Kim, Yunjin [1 ]
van Zyl, Jakob [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
D O I
10.1109/IGARSS.2006.20
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Soil moisture is a key parameter in understanding the global water cycle and in predicting natural hazards. Polarimetric radar measurements have been used for estimating soil moisture of bare surfaces. In order to estimate soil moisture accurately, the surface roughness effect must be compensated properly. In addition, these algorithms will not produce accurate results for vegetated surfaces. It is difficult to retrieve soil moisture of a vegetated surface since the radar backscattering cross section is sensitive to the vegetation structure and environmental conditions such as the ground slope. Therefore, it is necessary to develop a method to estimate the effect of the surface roughness and vegetation reliably. One way to remove the roughness effect and the vegetation contamination is to take advantage of the temporal variation of soil moisture. In order to understand the global hydrologic cycle, it is desirable to measure soil moisture with one- to two-days revisit. Using these frequent measurements, a time series approach can be implemented to improve the soil moisture retrieval accuracy.
引用
收藏
页码:60 / 62
页数:3
相关论文
共 50 条
  • [1] An Approach to Constructing a Homogeneous Time Series of Soil Moisture Using SMOS
    Leroux, Delphine J.
    Kerr, Yann H.
    Wood, Eric F.
    Sahoo, Alok K.
    Bindlish, Rajat
    Jackson, Thomas J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 393 - 405
  • [2] Hydraulic Property Estimation of Green Roof Substrates from Soil Moisture Time Series
    Cuadrado-Alarcón, Blanca
    Vanwalleghem, Tom
    Laguna, Ana María
    Hayas, Antonio
    Peña, Adolfo
    Martínez, Gonzalo
    Lora, Ángel
    Giráldez, Juan Vicente
    [J]. Water (Switzerland), 2024, 16 (19)
  • [3] A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data
    Kim, Yunjin
    van Zyl, Jakob J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (08): : 2519 - 2527
  • [4] TIME SERIES INVESTIGATION OF SOIL MOISTURE ESTIMATION USING COMPACT POLARIMETRY AT L-BAND
    Ponnurangam, G. G.
    Jagdhuber, T.
    Hajnsek, I.
    Rao, Y. S.
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1691 - 1694
  • [5] AN HYBRID APPROACH FOR SOIL MOISTURE ESTIMATION WITH SENTINEL DATA
    Zribi, Mehrez
    Nativel, Simon
    Ayari, Emna
    Gascoin, Simon
    Albergel, Clement
    Baghdadi, Nicolas
    Madelon, Remi
    Rodriguez-Fernandez, Nemesio
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3186 - 3189
  • [6] A NEW METHOD FOR ESTIMATION OF BARE SURFACE SOIL MOISTURE USING TIME-SERIES RADAR OBSERVATIONS
    Liu, Chenzhou
    Shi, Jiancheng
    Zhao, Tianjie
    Gao, Shuai
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 2700 - 2703
  • [7] Forecasting Soil Moisture Based on Evaluation of Time Series Analysis
    Singh, Sukhwinder
    Kaur, Sanmeet
    Kumar, Parteek
    [J]. ADVANCES IN POWER AND CONTROL ENGINEERING, GUCON 2019, 2020, 609 : 145 - 156
  • [8] Time-Series Retrieval of Soil Moisture Using CYGNSS
    M-Khaldi, Mohammad M.
    Johnson, Joel T.
    O'Brien, Andrew J.
    Balenzano, Anna
    Mattia, Francesco
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4322 - 4331
  • [9] Soil Moisture Regional Estimation Approach to Determine Irrigation Demands
    Flores Carrillo, Diego Alberto
    Sanchez Fernandez, Luis Pastor
    Sanchez Perez, Luis Alejandro
    [J]. COMPUTACION Y SISTEMAS, 2020, 24 (01): : 359 - 390
  • [10] An Extension of the Alpha Approximation Method for Soil Moisture Estimation Using Time-Series SAR Data Over Bare Soil Surfaces
    He, Lian
    Qin, Qiming
    Panciera, Rocco
    Tanase, Mihai
    Walker, Jeffrey P.
    Hong, Yang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (08) : 1328 - 1332