Efficient computation of maximal orders in Artin-Schreier extensions

被引:2
|
作者
Sutherland, Nicole [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Computat Algebra Grp, Sydney, NSW 2006, Australia
关键词
Maximal orders; Artin-Schreier extensions; KUMMER EXTENSIONS;
D O I
10.1016/j.jsc.2012.11.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe an algorithm, linear in the degree of the field, for computing pseudo bases for integral closures of holomorphy rings in Artin-Schreier extensions of global function fields and a similar algorithm, also linear in the degree of the field, for computing pseudo bases for S-maximal orders of Artin-Schreier extensions of global function fields. We give examples comparing the running time of our algorithm to that of Round 2 and Fraatz (2005). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:26 / 39
页数:14
相关论文
共 50 条
  • [31] Generalized Artin-Schreier polynomials
    Guersenzvaig, N. H.
    Szechtman, Fernando
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (06)
  • [32] ON THE DEFORMATION OF ARTIN-SCHREIER TO KUMMER
    SEKIGUCHI, T
    OORT, F
    SUWA, N
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1989, 22 (03): : 345 - 375
  • [33] ARTIN-SCHREIER CURVES AND CODES
    VANDERGEER, G
    JOURNAL OF ALGEBRA, 1991, 139 (01) : 256 - 272
  • [34] Artin-Schreier root stacks
    Kobin, Andrew
    JOURNAL OF ALGEBRA, 2021, 586 : 1014 - 1052
  • [35] Polars of Artin-Schreier curves
    Hefez, A
    Kakuta, N
    ACTA ARITHMETICA, 1996, 77 (01) : 57 - 70
  • [36] AN APPLICATION OF THE ARTIN-SCHREIER THEOREM
    ISAACS, IM
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (03): : 277 - 278
  • [37] Infinite towers of Artin-Schreier defect extensions of rational function fields
    Blaszczok, Anna
    VALUATION THEORY IN INTERACTION, 2014, : 16 - 54
  • [38] Elements of high order in Artin-Schreier extensions of finite fields Fq
    Brochero Martinez, F. E.
    Reis, Lucas
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 41 : 24 - 33
  • [39] Explicit maximal and minimal curves of Artin-Schreier type from quadratic forms
    Bartoli, Daniele
    Quoos, Luciane
    Saygi, Zulfukar
    Yilmaz, Emrah Sercan
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2021, 32 (04) : 507 - 520
  • [40] ARTIN-SCHREIER EQUATIONS IN CHARACTERISTIC ZERO
    MACKENZIE, RE
    WHAPLES, G
    AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (03) : 473 - 485