Synergy between ion temperature gradient turbulence and neoclassical processes in global gyrokinetic particle-in-cell simulations

被引:15
|
作者
Vernay, T. [1 ]
Brunner, S. [1 ]
Villard, L. [1 ]
McMillan, B. F. [2 ]
Jolliet, S. [1 ]
Tran, T. M. [1 ]
Bottino, A. [3 ]
机构
[1] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc EURATOM Conferat Suisse, CH-1015 Lausanne, Switzerland
[2] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England
[3] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
ZONAL FLOWS; TRANSPORT; CODE;
D O I
10.1063/1.3699189
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Based on the CYCLONE case, simulations of collisional electrostatic ion temperature gradient (ITG) microturbulence carried out with the global gyrokinetic particle-in-cell (PIC) code ORB5 are presented. Considering adiabatic electrons, an increase in ion heat transport over the collisionless turbulent case due to ion-ion collisions is found to exceed the neoclassical contribution. This synergetic effect is due to interaction of collisions, turbulence, and zonal flows. When going from a collisionless to a collisional ITG turbulence simulation, a moderate reduction of the average zonal flow level is observed. The collisional zonal flow level turns out to be roughly independent of the finite collisionality considered. The Dimits shift softening by collisions [Z. Lin et al., Phys. Rev. Lett. 83, 3645 (1999)] is further characterized, and the shearing rate saturation mechanism is emphasized. Turbulence simulations start from a neoclassical equilibrium [T. Vernay et al., Phys. Plasmas 17, 122301 (2010)] and are carried out over significant turbulence times and several collision times thanks to a coarse-graining procedure, ensuring a sufficient signal/noise ratio even at late times in the simulation. The relevance of the Lorentz approximation for ion-ion collisions, compared to a linearized Landau self-collision operator, is finally addressed in the frame of both neoclassical and turbulence studies. [http://dx.doi.org/10.1063/1.3699189]
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Gyrokinetic-Vlasov simulations of the ion temperature gradient turbulence in tokamak and helical systems
    Watanabe, T. -H.
    Sugama, H.
    Margalet, S. Ferrando i
    THEORY OF FUSION PLASMAS, 2006, 871 : 264 - +
  • [22] Global linear gyrokinetic particle-in-cell simulations of fine-scale modes in a tokamak
    Mishchenko, A.
    Hatzky, R.
    Koenies, A.
    THEORY OF FUSION PLASMAS, 2006, 871 : 394 - +
  • [23] Finite element approach to global gyrokinetic Particle-In-Cell simulations using magnetic coordinates
    Fivaz, M
    Brunner, S
    de Ridder, G
    Sauter, O
    Tran, TM
    Vaclavik, J
    Villard, L
    Appert, K
    COMPUTER PHYSICS COMMUNICATIONS, 1998, 111 (1-3) : 27 - 47
  • [24] Kinetic Alfven Turbulence: Electron and Ion Heating by Particle-in-cell Simulations
    Hughes, R. Scott
    Gary, S. Peter
    Wang, Joseph
    Parashar, Tulasi N.
    ASTROPHYSICAL JOURNAL LETTERS, 2017, 847 (02)
  • [25] Turbulence spreading and transport scaling in global gyrokinetic particle simulations
    Lin, Z
    Hahm, TS
    PHYSICS OF PLASMAS, 2004, 11 (03) : 1099 - 1108
  • [26] Verification of gyrokinetic δf simulations of electron temperature gradient turbulence
    Nevins, W. M.
    Parker, S. E.
    Chen, Y.
    Candy, J.
    Dimit, A.
    Dorland, W.
    Hammett, G. W.
    Jenko, F.
    PHYSICS OF PLASMAS, 2007, 14 (08)
  • [27] Energy conservation in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven modes in θ-pinch geometry
    Hatzky, R
    Tran, TM
    Könies, A
    Kleiber, R
    Allfrey, SJ
    PHYSICS OF PLASMAS, 2002, 9 (03) : 898 - 912
  • [28] Evolution of the marker distribution in gyrokinetic df particle-in-cell simulations
    Chen, Yang
    Cheng, Junyi
    Parker, Scott E.
    PHYSICS OF PLASMAS, 2022, 29 (07)
  • [29] Linear gyrokinetic particle-in-cell simulations of Alfven instabilities in tokamaks
    Biancalani, A.
    Bottino, A.
    Briguglio, S.
    Konies, A.
    Lauber, Ph.
    Mishchenko, A.
    Poli, E.
    Scott, B. D.
    Zonca, F.
    PHYSICS OF PLASMAS, 2016, 23 (01)
  • [30] Reduction of the statistical error in electromagnetic gyrokinetic particle-in-cell simulations
    Hatzky, R.
    Kleiber, R.
    Koenies, A.
    Mishchenko, A.
    Borchardt, M.
    Bottino, A.
    Sonnendruecker, E.
    JOURNAL OF PLASMA PHYSICS, 2019, 85 (01)