NEW DECISION MAKER MODEL FOR MULTIOBJECTIVE OPTIMIZATION INTERACTIVE METHODS

被引:0
|
作者
Zujevs, Andrejs [1 ]
Eiduks, Janis [1 ]
机构
[1] Latvia Univ Agr, Dept Comp Syst, Liela St 2, Jelgava, Latvia
关键词
Decision Maker model; multiobjective optimization; comparative study; interactive method;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Decision Maker Model instead of human Decision Maker can be used for testing/comparing multiobjective optimization interactive methods. New Decision Maker Model (called ZuMo) was defined as two criteria multiobjective optimization problem which is solved by using multiobjective evolutionary algorithm NSGA-II Model can significantly reduce time and workload of testing/comparing experiment design and implementation and easy can be used for ad-hoc methods. Evolutionary algorithms are effective in parallel computing that can reduce experiment time also. The designed model was tested comparing STEM and GUESS interactive methods solving three 2D criteria and three 3D criteria testing problems. Different metrics are used: iteration count, stopping reason, general distance, error ratio, spacing and maximal Pareto error. The GUESS method was more effective in obtaining goal solution then STEM method. The new ZuMo model is universal and can be updated for testing/comparing different multiobjective optimization interactive methods and ad-hoc methods also. Model framework if necessary can be extended by defining additional criteria.
引用
收藏
页码:51 / +
页数:2
相关论文
共 50 条
  • [1] Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
    Afsar, Bekir
    Ruiz, Ana B.
    Miettinen, Kaisa
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (02) : 1165 - 1181
  • [2] Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
    Bekir Afsar
    Ana B. Ruiz
    Kaisa Miettinen
    [J]. Complex & Intelligent Systems, 2023, 9 : 1165 - 1181
  • [3] Decision-Maker Preference Modeling in Interactive Multiobjective Optimization
    Pedro, Luciana R.
    Takahashi, Ricardo H. C.
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, EMO 2013, 2013, 7811 : 811 - 824
  • [4] Comparing reference point based interactive multiobjective optimization methods without a human decision maker
    Chen, Lu
    Miettinen, Kaisa
    Xin, Bin
    Ojalehto, Vesa
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (03) : 757 - 788
  • [5] Comparing reference point based interactive multiobjective optimization methods without a human decision maker
    Lu Chen
    Kaisa Miettinen
    Bin Xin
    Vesa Ojalehto
    [J]. Journal of Global Optimization, 2023, 85 : 757 - 788
  • [6] Interactive Robust Multiobjective Optimization Driven by Decision Rule Preference Model
    Slowinski, Roman
    [J]. MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5861 : 1 - 4
  • [7] A virtual-decision-maker library considering personalities and dynamically changing preference structures for interactive multiobjective optimization
    Chen, Lu
    Xin, Bin
    Chen, Jie
    Li, Juan
    [J]. 2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 636 - 641
  • [8] Decision maker iterative-based framework for multiobjective robust optimization
    Sabioni, Claret Laurente
    de Oliveira Ribeiro, Marcos Felipe
    de Vasconcelos, Joao Antonio
    [J]. NEUROCOMPUTING, 2017, 242 : 113 - 130
  • [9] Incorporation of decision maker's preference into evolutionary multiobjective optimization algorithms
    Ishibuchi, Hisao
    Nojima, Yusuke
    Narukawa, Kaname
    Doi, Tsutomu
    [J]. GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 741 - +
  • [10] Assessing the Performance of Interactive Multiobjective Optimization Methods: A Survey
    Afsar, Bekir
    Miettinen, Kaisa
    Ruiz, Francisco
    [J]. ACM COMPUTING SURVEYS, 2021, 54 (04)