Incorporation of decision maker's preference into evolutionary multiobjective optimization algorithms

被引:0
|
作者
Ishibuchi, Hisao [1 ]
Nojima, Yusuke [1 ]
Narukawa, Kaname [1 ]
Doi, Tsutomu [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, Dept Comp Sci & Intelligent Syst, Naka Ku, 1-1 Gakuen Cho, Sakai, Osaka 5998531, Japan
基金
日本学术振兴会;
关键词
evolutionary multiobjective optimization (EMO); many-objective optimization; multiobjective combinatorial optimization; decision maker's preference; balance between convergence and diversity;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main characteristic feature of evolutionary multiobjective optimization (EMO) is that no a priori information about the decision maker's preference is utilized in the search phase. EMO algorithms try to find a set of well-distributed Pareto-optimal solutions with a wide range of objective values. It is, however, very difficult for EMO algorithms to find a good solution set of a multiobjective combinatorial optimization problem with many decision variables and/or many objectives. In this paper, we propose an idea of incorporating the decision maker's preference into EMO algorithms to efficiently search for Pareto-optimal solutions of such a hard multiobjective optimization problem.
引用
收藏
页码:741 / +
页数:2
相关论文
共 50 条
  • [1] A Framework for the Study of Preference Incorporation in Multiobjective Evolutionary Algorithms
    Iordache, Raluca
    Iordache, Serban
    Moldoveanu, Florica
    [J]. GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 621 - 628
  • [2] A Territory Defining Multiobjective Evolutionary Algorithms and Preference Incorporation
    Karahan, Ibrahim
    Koeksalan, Murat
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (04) : 636 - 664
  • [3] Decision-Maker Preference Modeling in Interactive Multiobjective Optimization
    Pedro, Luciana R.
    Takahashi, Ricardo H. C.
    [J]. EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, EMO 2013, 2013, 7811 : 811 - 824
  • [4] Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
    Afsar, Bekir
    Ruiz, Ana B.
    Miettinen, Kaisa
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (02) : 1165 - 1181
  • [5] Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
    Bekir Afsar
    Ana B. Ruiz
    Kaisa Miettinen
    [J]. Complex & Intelligent Systems, 2023, 9 : 1165 - 1181
  • [6] Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms
    Ishibuchi, Hisao
    Doi, Tsutomu
    Nojima, Yusuke
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN IX, PROCEEDINGS, 2006, 4193 : 493 - 502
  • [7] Preference Incorporation in Evolutionary Multiobjective Optimization: A Survey of the State-of-the-Art
    Bechikh, Slim
    Kessentini, Marouane
    Ben Said, Lamjed
    Ghedira, Khaled
    [J]. ADVANCES IN COMPUTERS, VOL 98, 2015, 98 : 141 - 207
  • [8] Preference Incorporation into Evolutionary Multiobjective Optimization using Preference Information Implicit in a Set of Assignment Examples
    Cruz-Reyes, Laura
    Fernandez, Eduardo
    Olmedo, Rafael
    Sanchez, Patricia
    Navarro, Jorge
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL WORKSHOP ON KNOWLEDGE DISCOVERY, KNOWLEDGE MANAGEMENT AND DECISION SUPPORT (EUREKA-2013), 2013, 51 : 179 - 187
  • [9] Learning of a Decision-Maker's Preference Zone With an Evolutionary Approach
    Aggarwal, Manish
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (03) : 670 - 682
  • [10] Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker
    Battiti, Roberto
    Passerini, Andrea
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (05) : 671 - 687