The zero-contingent entropic uncertainty relations

被引:0
|
作者
Majerník, V
Vlcek, M
Majerníková, E
机构
[1] Palacky Univ, Fac Sci, Dept Theoret Phys, CZ-77207 Olomouc, Czech Republic
[2] Slovak Acad Sci, Inst Phys, Bratislava 84228, Slovakia
关键词
uncertainty relation; entropy functionals; spin system; finite potential well;
D O I
暂无
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
This article deals with a new type of uncertainty relation given as the sum of so-called zero-contingent entropies of a pair of observables which do not share any common eigenvector. We show that this uncertainty relation is simpler to handle mathematically than the common entropic uncertainty relation. As examples for demonstrating the difference between the Heisenberg, zero-contingent entropic and common entropic uncertainty relation, we investigate the quantum system with 1/2-spin particle and the finite potential well. We show that, whereas the lower bound of the Heisenberg uncertainty relation for the spin components is zero, the sums of their zero-contingent entropies and information entropies never drop under a certain positive number. Yet, the zero-contingent entropy uncertainty relation is considerably simpler to handle mathematically.
引用
收藏
页码:361 / 377
页数:17
相关论文
共 50 条
  • [1] Zero-contingent entropic uncertainty relations
    Majernik, V.
    Vlcek, M.
    Majernikova, E.
    [J]. Acta Physica Hungarica New Series Heavy Ion Physics, 9 (04): : 361 - 377
  • [2] ENTROPIC UNCERTAINTY RELATIONS
    BIALYNICKIBIRULA, I
    [J]. PHYSICS LETTERS A, 1984, 103 (05) : 253 - 254
  • [3] Optimality of entropic uncertainty relations
    Abdelkhalek, Kais
    Schwonnek, Rene
    Maassen, Hans
    Furrer, Fabian
    Duhme, Joerg
    Raynal, Philippe
    Englert, Berthold-Georg
    Werner, Reinhard F.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (06)
  • [4] Additivity of entropic uncertainty relations
    Schwonnek, Rene
    [J]. QUANTUM, 2018, 2
  • [5] ENTROPIC FORMULATION OF UNCERTAINTY RELATIONS
    SRINIVAS, MD
    [J]. PRAMANA, 1985, 25 (04) : 369 - 375
  • [6] Entropic uncertainty relations and their applications
    Coles, Patrick J.
    Berta, Mario
    Tomamichel, Marco
    Wehner, Stephanie
    [J]. REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
  • [7] GENERALIZED ENTROPIC UNCERTAINTY RELATIONS
    MAASSEN, H
    UFFINK, JBM
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (12) : 1103 - 1106
  • [8] Majorization entropic uncertainty relations
    Puchala, Zbigniew
    Rudnicki, Lukasz
    Zyczkowski, Karol
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)
  • [9] The acoustic entropic uncertainty relations
    Majerník, V
    Vetesnik, A
    Kovár, D
    [J]. ACUSTICA, 2000, 86 (02): : 385 - 387
  • [10] Review on entropic uncertainty relations
    Li Li-Juan
    Ming Fei
    Song Xue-Ke
    Ye Liu
    Wang Dong
    [J]. ACTA PHYSICA SINICA, 2022, 71 (07)