Linear and nonlinear optical properties of quasi-periodic one-dimensional structures

被引:0
|
作者
Sibilia, C
Bertolotti, M
Centini, M
D'Aguanno, G
Scalora, M
Bloemer, MJ
Bowden, CM
机构
[1] INFM, I-00161 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Energet, I-00161 Rome, Italy
[3] USA, AMSAM, RD, WS,ST,Aviat & Missile Res Dev & Engn Ctr, Redstone Arsenal, AL 35898 USA
关键词
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
The optical properties of self-similar optical multilayer structures are first discussed for low input intensities, thus allowing the neglect of nonlinear effects. The structures under consideration are obtained by alternating two dielectric layers of different refractive indexes following a fractal set. The triadic Cantor and the Fibonacci sets are considered, and some applications of the field localization properties of these structures are discussed. Nonlinear behavior is also discussed, restricted to third-order nonlinear polarization of the dielectric materials constituting the structures.
引用
收藏
页码:63 / 91
页数:29
相关论文
共 50 条
  • [1] Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures
    Bellingeri, Michele
    Chiasera, Alessandro
    Kriegel, Ilka
    Scotognella, Francesco
    [J]. OPTICAL MATERIALS, 2017, 72 : 403 - 421
  • [2] Optical properties of the quasi-periodic one-dimensional generalized multilayer Fibonacci structures
    Aissaoui, M.
    Zaghdoudi, J.
    Kanzari, M.
    Rezig, B.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2006, 59 : 69 - 83
  • [3] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Geng, Jiansheng
    You, Jiangong
    Zhao, Zhiyan
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (01) : 116 - 158
  • [4] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Jiansheng Geng
    Jiangong You
    Zhiyan Zhao
    [J]. Geometric and Functional Analysis, 2014, 24 : 116 - 158
  • [5] ALGEBRAIC STRUCTURES FOR ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    KRAMER, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (02): : 213 - 228
  • [6] Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal
    Zhang, Yuping
    Wu, Zhixin
    Cao, Yanyan
    Zhang, Huiyun
    [J]. OPTICS COMMUNICATIONS, 2015, 338 : 168 - 173
  • [7] Exponential localization in one-dimensional quasi-periodic optical lattices
    Modugno, Michele
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [8] Optical polychromatic filter by the combination of periodic and quasi-periodic one-dimensional, dielectric photonic bandgap structures
    Kanzari, M
    Rezig, B
    [J]. JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2001, 3 (06): : S201 - S207
  • [9] PHONON PROPERTIES OF A CLASS OF ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    YOU, JQ
    YANG, QB
    YAN, JR
    [J]. PHYSICAL REVIEW B, 1990, 41 (11): : 7491 - 7496
  • [10] KAM THEORY FOR QUASI-PERIODIC EQUILIBRIA IN ONE-DIMENSIONAL QUASI-PERIODIC MEDIA
    Su, Xifeng
    de la Llave, Rafael
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (06) : 3901 - 3927