Exponential localization in one-dimensional quasi-periodic optical lattices

被引:165
|
作者
Modugno, Michele [1 ,2 ]
机构
[1] Univ Florence, Dipartimento Fis, I-50019 Sesto Fiorentino, Italy
[2] Univ Florence, LENS, I-50019 Sesto Fiorentino, Italy
来源
NEW JOURNAL OF PHYSICS | 2009年 / 11卷
关键词
METAL-INSULATOR-TRANSITION; ANDERSON LOCALIZATION; SOLVABLE MODEL; MOTION; ATOMS;
D O I
10.1088/1367-2630/11/3/033023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the localization properties of a one-dimensional bichromatic optical lattice in the tight-binding regime, by discussing how exponentially localized states emerge upon changing the degree of commensurability. We also review the mapping onto the discrete Aubry-Andre model, and provide evidence on how the momentum distribution gets modified in the crossover from extended to exponentially localized states. This analysis is relevant to the recent experiment on the Anderson localization of a noninteracting Bose-Einstein condensate in a quasi-periodic optical lattice (Roati et al 2008 Nature 453 895).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ELECTRONS ON ONE-DIMENSIONAL QUASI-PERIODIC LATTICES
    FUJITA, M
    MACHIDA, K
    SYNTHETIC METALS, 1987, 19 (1-3) : 39 - 44
  • [2] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Jiansheng Geng
    Jiangong You
    Zhiyan Zhao
    Geometric and Functional Analysis, 2014, 24 : 116 - 158
  • [3] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Geng, Jiansheng
    You, Jiangong
    Zhao, Zhiyan
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (01) : 116 - 158
  • [4] LOCALIZATION FOR A CLASS OF ONE-DIMENSIONAL QUASI-PERIODIC SCHRODINGER-OPERATORS
    FROHLICH, J
    SPENCER, T
    WITTWER, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) : 5 - 25
  • [5] EXACT PHONON GREEN-FUNCTIONS OF ONE-DIMENSIONAL QUASI-PERIODIC LATTICES
    ZHONG, JX
    YAN, JR
    YOU, JQ
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1992, 170 (02): : 435 - 441
  • [6] Localization of the discrete one-dimensional quasi-periodic Schrödinger operators
    Refai, Walid
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 10435 - 10443
  • [7] Control of light propagation in one-dimensional quasi-periodic nonlinear photonic lattices
    Radosavljevic, Ana
    Gligoric, Goran
    Maluckov, Aleksandra
    Stepic, Milutin
    JOURNAL OF OPTICS, 2014, 16 (02)
  • [8] THERMAL-CONDUCTIVITY IN ONE-DIMENSIONAL QUASI-PERIODIC TODA-LATTICES
    NISHIGUCHI, N
    TAKAHASHI, N
    SAKUMA, T
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (06) : 1465 - 1473
  • [9] Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures
    Bellingeri, Michele
    Chiasera, Alessandro
    Kriegel, Ilka
    Scotognella, Francesco
    OPTICAL MATERIALS, 2017, 72 : 403 - 421
  • [10] KAM THEORY FOR QUASI-PERIODIC EQUILIBRIA IN ONE-DIMENSIONAL QUASI-PERIODIC MEDIA
    Su, Xifeng
    de la Llave, Rafael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (06) : 3901 - 3927