Covariant Hamilton equations for field theory

被引:24
|
作者
Giachetta, G [1 ]
Mangiarotti, L
Sardanashvily, G
机构
[1] Univ Camerino, Dept Math & Phys, I-62032 Camerino, MC, Italy
[2] Moscow MV Lomonosov State Univ, Fac Phys, Dept Theoret Phys, Moscow 117234, Russia
来源
关键词
D O I
10.1088/0305-4470/32/38/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the relations between the equations of first-order Lagrangian field theory on fibre bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian held theory. If a Lagrangian is hyperregular, these equations are equivalent. A degenerate Lagrangian requires a set of associated Hamiltonian forms in order to exhaust all solutions of the Euler-Lagrange equations. The case of quadratic degenerate Lagrangians is studied in detail.
引用
收藏
页码:6629 / 6642
页数:14
相关论文
共 50 条
  • [21] Gauge reduction in covariant field theory
    Lopez, Marco Castrillon
    Abella, Alvaro Rodriguez
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (30)
  • [22] Causality in covariant string field theory
    Hata, H
    Oda, H
    [J]. PHYSICS LETTERS B, 1997, 394 (3-4) : 307 - 314
  • [23] CONSTRUCTION OF COVARIANT THEORY OF SPINOR FIELD
    SEVRYUK, VP
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1975, (02): : 60 - 62
  • [24] SUPERPOTENTIALS FOR A GENERALLY COVARIANT FIELD THEORY
    ANDERSON, JL
    [J]. PHYSICAL REVIEW LETTERS, 1958, 1 (11) : 436 - 436
  • [25] COVARIANT STRING FIELD-THEORY
    HATA, H
    ITOH, K
    KUGO, T
    KUNITOMO, H
    OGAWA, K
    [J]. PHYSICAL REVIEW D, 1986, 34 (08): : 2360 - 2429
  • [26] Covariant quantum field theory of tachyons
    Paczos, Jerzy
    Debski, Kacper
    Cedrowski, Szymon
    Charzynski, Szymon
    Turzynski, Krzysztof
    Ekert, Artur
    Dragan, Andrzej
    [J]. PHYSICAL REVIEW D, 2024, 110 (01)
  • [27] COVARIANT THEORY OF AN UNIFIED VECTOR FIELD
    SEVRYUK, VP
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1974, (07): : 131 - 132
  • [28] Histories and observables in covariant field theory
    Paugam, Frederic
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (09) : 1675 - 1702
  • [29] On the covariant representation of integral equations of the electromagnetic field
    Fedosin, Sergey G.
    [J]. Progress In Electromagnetics Research C, 2019, 96 : 109 - 122
  • [30] UNIVERSAL FIELD-EQUATIONS WITH COVARIANT SOLUTIONS
    FAIRLIE, DB
    GOVAERTS, J
    MOROZOV, A
    [J]. NUCLEAR PHYSICS B, 1992, 373 (01) : 214 - 232