Quantitative analysis of multiple sclerosis: A feasibility study

被引:0
|
作者
Li, Lihong [1 ,3 ]
Li, Xiang [4 ]
Wei, Xinzhou [5 ]
Sturm, Deborah [2 ]
Lu, Hongbing [3 ]
Liang, Zhengrong [3 ]
机构
[1] CUNY Coll Staten Isl, Dept Engn Sci & Phys, Staten Isl, NY 10301 USA
[2] CUNY Coll Staten Isl, Dept Comp, Staten Isl, NY 10301 USA
[3] SUNY Stony Brook, Dept Radiol, Stony Brook, NY USA
[4] Univ Pittsburgh, Dept Radiat Oncol, Pittsburgh, PA USA
[5] New York City Coll Technol, Dept Elect Engn, Brooklyn, NY USA
基金
美国国家卫生研究院;
关键词
multiple sclerosis; magnetic resonance image; partial volume segmentation; maximum a posterior; Markov random field; inhomogeneity;
D O I
10.1117/12.654181
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multiple Sclerosis (MS) is an inflammatory and demyelinating disorder of the central nervous system with a presumed immune-mediated etiology. For treatment of MS, the measurements of white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) are often used in conjunction with clinical evaluation to provide a more objective measure of MS burden. In this paper, we apply a new unifying automatic mixture-based algorithm for segmentation of brain tissues to quantitatively analyze MS. The method takes into account the following effects that commonly appear in MR imaging: 1) The MR data is modeled as a stochastic process with an inherent inhomogeneity effect of smoothly varying intensity; 2) A new partial volume (PV) model is built in establishing the maximum a posterior (MAP) segmentation scheme; 3) Noise artifacts are minimized by a priori Markov random field (MRF) penalty indicating neighborhood correlation from tissue mixture. The volumes of brain tissues (WM, GM) and CSF are extracted from the mixture-based segmentation. Experimental results of feasibility studies on quantitative analysis of MS are presented.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A task-oriented circuit training in multiple sclerosis: a feasibility study
    Sofia Straudi
    Carlotta Martinuzzi
    Claudia Pavarelli
    Amira Sabbagh Charabati
    Maria Grazia Benedetti
    Calogero Foti
    Michela Bonato
    Eleonora Zancato
    Nino Basaglia
    BMC Neurology, 14
  • [32] Orthotic shorts for improving gait and walking in multiple sclerosis: a feasibility study
    Snowdon, Nicola
    McLean, Sionnadh
    Piercy, Hilary
    Brodie, Matthew A.
    Wheat, Jon
    DISABILITY AND REHABILITATION, 2023, 45 (18) : 3000 - 3011
  • [33] A task-oriented circuit training in multiple sclerosis: a feasibility study
    Straudi, Sofia
    Martinuzzi, Carlotta
    Pavarelli, Claudia
    Charabati, Amira Sabbagh
    Benedetti, Maria Grazia
    Foti, Calogero
    Bonato, Michela
    Zancato, Eleonora
    Basaglia, Nino
    BMC NEUROLOGY, 2014, 14
  • [34] TELEREHABILITATION IN MULTIPLE SCLEROSIS: RESULTS OF A RANDOMIZED FEASIBILITY AND EFFICACY PILOT STUDY
    Fjeldstad-Pardo, Cecilie
    Thiessen, Amy
    Pardo, Gabriel
    INTERNATIONAL JOURNAL OF TELEREHABILITATION, 2018, 10 (02): : 55 - 63
  • [35] Feasibility of cognitive rehabilitation in patients with advanced multiple sclerosis: A pilot study
    Prouskas, Stefanos E.
    Chiaravalloti, Nancy D.
    Kant, Neeltje
    Ball, Karlene K.
    de Groot, Vincent
    Uitdehaag, Bernard M. J.
    Geurts, Jeroen J. G.
    Kooij, Elizabeth A.
    Hulst, Hanneke E.
    MULTIPLE SCLEROSIS JOURNAL-EXPERIMENTAL TRANSLATIONAL AND CLINICAL, 2021, 7 (04)
  • [36] Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: Longitudinal quantitative analysis
    Ge, YL
    Grossman, RI
    Udupa, JK
    Wei, LG
    Mannon, LJ
    Polansky, M
    Kolson, DL
    RADIOLOGY, 2000, 214 (03) : 665 - 670
  • [37] Motherhoodmotherhood choice in multiple sclerosis (MoMS) - feasibility and pilot study of two decision support programmes choice in multiple sclerosis (MoMS) - feasibility and pilot study of two decision support programmes
    Peper, J.
    Stahl, L.
    Koepke, S.
    Hellwig, K.
    Heesen, C.
    Rahn, A. C.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (3_SUPPL) : 699 - 700
  • [38] Texture analysis of multiple sclerosis: a comparative study
    Zhang, Jing
    Tong, Longzheng
    Wang, Lei
    Li, Ning
    MAGNETIC RESONANCE IMAGING, 2008, 26 (08) : 1160 - 1166
  • [39] Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): A feasibility study
    Verma, Rajeev Kumar
    Wiest, Roland
    Locher, Cacilia
    Heldner, Mirjam Rachel
    Schucht, Phillip
    Raabe, Andreas
    Gralla, Jan
    Kamm, Christian Philipp
    Slotboom, Johannes
    Kellner-Weldon, Frauke
    MEDICAL PHYSICS, 2017, 44 (08) : 4000 - 4008
  • [40] Quantitative analysis of multiple sclerosis patients' preferences for drug treatment: a best-worst scaling study
    Lynd, Larry D.
    Traboulsee, Anthony
    Marra, Carlo A.
    Mittmann, Nicole
    Evans, Charity
    Li, Kathy H.
    Carter, Melanie
    Hategekimana, Celestin
    THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2016, 9 (04) : 287 - 296