Cosmic microwave background component separation by parameter estimation

被引:97
|
作者
Eriksen, HK
Dickinson, C
Lawrence, CR
Baccigalupi, C
Banday, AJ
Górski, KM
Hansen, FK
Lilje, PB
Pierpaoli, E
Seiffert, MD
Smith, KM
Vanderlinde, K
机构
[1] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway
[2] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway
[3] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[4] CALTECH, Dept Astron, Pasadena, CA 91125 USA
[5] SISSA, ISAS, Astrophys Sector, I-34014 Trieste, Italy
[6] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy
[7] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany
[8] Max Planck Inst Astrophys, D-85741 Garching, Germany
[9] Univ Warsaw Observ, PL-00478 Warsaw, Poland
[10] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[11] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[12] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA
来源
ASTROPHYSICAL JOURNAL | 2006年 / 641卷 / 02期
关键词
cosmic microwave background; cosmology : observations; methods : numerical;
D O I
10.1086/500499
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a method for CMB component separation based on standard Bayesian parameter estimation techniques. We assume a parametric spectral model for each signal component and fit the corresponding parameters pixel by pixel in a two-stage process. First we fit for the full parameter set (e.g., component amplitudes and spectral indices) in low-resolution and high signal-to-noise ratio maps using MCMC, obtaining both best-fit values for each parameter and the associated uncertainty. The goodness of fit is approximated by a chi(2) statistic. Then we fix all nonlinear parameters at their low-resolution best-fit values and solve analytically for high-resolution component amplitude maps. This likelihood approach has many advantages: the fitted model may be chosen freely, and the method is therefore completely general; all assumptions are transparent; no restrictions on spatial variations of foreground properties are imposed; the results may be monitored by goodness-of-fit tests; and, most importantly, we obtain reliable error estimates on all estimated quantities. We apply the method to simulated Planck satellite and 6 year WMAP data based on realistic models and show that separation at the microkelvin level is indeed possible in these cases. We also outline how the foreground uncertainties may be rigorously propagated through to the CMB power spectrum and cosmological parameters using a Gibbs sampling technique.
引用
收藏
页码:665 / 682
页数:18
相关论文
共 50 条
  • [31] COSMIC MICROWAVE BACKGROUND
    WICKRAMASINGHE, NC
    [J]. NATURE, 1992, 358 (6387) : 547 - 547
  • [32] The cosmic microwave background
    Silk, J
    [J]. ANNALES HENRI POINCARE, 2003, 4 (Suppl 1): : S275 - S290
  • [33] The cosmic microwave background
    Jones A.W.
    Lasenby A.N.
    [J]. Living Reviews in Relativity, 1998, 1 (1)
  • [34] THE COSMIC MICROWAVE BACKGROUND
    SILK, J
    [J]. FOURTEENTH TEXAS SYMPOSIUM ON RELATIVISTIC ASTROPHYSICS, 1989, 571 : 44 - 61
  • [35] The Cosmic Microwave Background
    Parkinson, David
    [J]. OBSERVATORY, 2009, 129 (1209): : 95 - 96
  • [36] The Cosmic Microwave Background
    Joseph Silk
    [J]. Annales Henri Poincaré, 2003, 4 : 275 - 290
  • [37] The cosmic microwave background
    Barreiro, RB
    [J]. NEW ASTRONOMY REVIEWS, 2000, 44 (03) : 179 - 204
  • [38] THE COSMIC MICROWAVE BACKGROUND
    PARTRIDGE, RB
    [J]. IAU SYMPOSIA, 1987, (124): : 31 - 53
  • [39] THE COSMIC MICROWAVE BACKGROUND
    SILK, J
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 571 : 44 - 61
  • [40] The cosmic microwave background
    Lasenby, AN
    Jones, AW
    [J]. CURRENT TOPICS IN ASTROFUNDAMENTAL PHYSICS: PRIMORDIAL COSMOLOGY, 1998, 511 : 325 - 357