Ergodicity, numerical range, and fixed points of holomorphic mappings

被引:2
|
作者
Reich, Simeon [1 ]
Shoikhet, David [2 ]
Zemanek, Jaroslav [3 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] ORT Braude Coll, Dept Math, IL-21982 Karmiel, Israel
[3] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
来源
基金
以色列科学基金会;
关键词
OPERATOR; BOUNDEDNESS; RETRACTIONS; DOMAIN;
D O I
10.1007/s11854-013-0009-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the local structure of the fixed point set of a holomorphic mapping defined on a (not necessarily bounded or convex) domain in a complex Banach space, using ergodic theory of linear operators and the nonlinear numerical range introduced by L. A. Harris. We provide several constructions of holomorphic retractions and a generalization of Cartan's Uniqueness Theorem. We also estimate the deviation of a holomorphic mapping from its linear approximation, the Fr,chet derivative at a fixed point.
引用
下载
收藏
页码:275 / 303
页数:29
相关论文
共 50 条