Medical Disease Prediction Using Artificial Neural Networks

被引:0
|
作者
Mantzaris, Dimitrios H. [1 ]
Anastassopoulos, George C. [1 ]
Lymberopoulos, Dimitrios K. [2 ]
机构
[1] Democritus Univ Thrace, Med Informat Lab, GR-68100 Alexandroupolis, Greece
[2] Univ Patras, Dept Elect & Comp Engn, Patras GR 26504, Greece
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study examines a variety of Artificial Neural Network (ANN) models in terms of their classification efficiency in an orthopedic disease, namely osteoporosis. Osteoporosis risk prediction may be viewed as a pattern classification problem, based on a set of clinical parameters. Multi-Layer Perceptrons (MLPs) and Probabilistic Neural Networks (PNNs) were used in order to face the osteoporosis risk factor prediction. This approach is the first computational intelligence technique based on ANNs for osteoporosis risk study on Greek population. MLPs and PNNs are both feed-forward networks; however, their modus operandi is different. Various MPL architectures were examined after modifying the number of nodes in the hidden layer, the transfer functions and the learning algorithms. Moreover, PNNs were implemented with spread values ranging from 0.1 to 50, and 4 or 2 neurons in output layer, according to coding of osteoporosis desired outcome. The obtained results lead to the conclusion that the PNNs outperform to MLPs, thus they are proved as appropriate computation intelligence technique for osteoporosis risk factor prediction. Furthermore, the overfitting problem was more frequent to MLPs, contrary to PNNs as their spread value increased. The aim of proposed PNN is to assist specialists in osteoporosis prediction, avoiding unnecessary further testing with bone densitometry.
引用
收藏
页码:793 / +
页数:2
相关论文
共 50 条
  • [31] Prediction of Solar Radiation Using Artificial Neural Networks
    Faceira, Joao
    Afonso, Paulo
    Salgado, Paulo
    CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL, 2015, 321 : 397 - 406
  • [32] GPS Orbital Prediction Using Artificial Neural Networks
    Yousif, Hamad
    El-Rabbany, Ahmed
    PROCEEDINGS OF THE 2008 NATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION - NTM 2008, 2008, : 773 - 780
  • [33] Using artificial neural networks in prediction, runoff and sediment
    Sichani, SA
    Tudeshki, ARS
    WATER-SAVING AGRICULTURE AND SUSTAINABLE USE OF WATER AND LAND RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2004, : 821 - 832
  • [34] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, S.H.
    Journal of the Southern African Institute of Mining and Metallurgy, 2010, 110 (05) : 207 - 212
  • [35] Prediction of Breast Cancer Using Artificial Neural Networks
    Saritas, Ismail
    JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (05) : 2901 - 2907
  • [36] Ozone Concentration Prediction using Artificial Neural Networks
    Gavrila, Camelia
    REVISTA DE CHIMIE, 2017, 68 (10): : 2224 - 2227
  • [37] Glucose Level Prediction Using Artificial Neural Networks
    Iancu, Eugen
    Iancu, Ionela
    Istrate, Dan
    Mota, Maria
    PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON SIMULATION, MODELLING AND OPTIMIZATION, 2009, : 407 - +
  • [38] Prediction of accident severity using artificial neural networks
    Moghaddam, F. Rezaie
    Afandizadeh, Sh.
    Ziyadi, M.
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2011, 9 (01) : 41 - 48
  • [39] Horse Racing Prediction Using Artificial Neural Networks
    Davoodi, Elnaz
    Khanteymoori, Ali Reza
    RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 155 - 160
  • [40] Prediction of corneal permeability using artificial neural networks
    Agatonovic-Kustrin, S
    Evans, A
    Alany, RG
    PHARMAZIE, 2003, 58 (10): : 725 - 729