Coherent transport properties of a three-terminal hybrid superconducting interferometer

被引:35
|
作者
Vischi, F. [1 ,2 ,3 ]
Carrega, M. [1 ,2 ]
Strambini, E. [1 ,2 ]
D'Ambrosio, S. [1 ,2 ]
Bergeret, F. S. [4 ,5 ]
Nazarov, Yu. V. [6 ]
Giazotto, F. [1 ,2 ]
机构
[1] CNR, Ist Nanosci, NEST, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[3] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[4] Univ Basque Country, CSIC, Ctr Mixto, CFM MPC, Manuel de Lardizabal 5, E-20018 San Sebastian, Spain
[5] DIPC, Manuel de Lardizabal 5, E-20018 San Sebastian, Spain
[6] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
基金
欧洲研究理事会;
关键词
JOSEPHSON-JUNCTIONS; IMPURITY; GAP;
D O I
10.1103/PhysRevB.95.054504
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an exhaustive theoretical analysis of a double-loop Josephson proximity interferometer, such as the one recently realized by Strambini et al. for control of the Andreev spectrum via an external magnetic field. This system, called omega-SQUIPT, consists of a T-shaped diffusive normal metal (N) attached to three superconductors (S) forming a double-loop configuration. By using the quasiclassical Green-function formalism, we calculate the local normalized density of states, the Josephson currents through the device, and the dependence of the former on the length of the junction arms, the applied magnetic field, and the S/N interface transparencies. We show that by tuning the fluxes through the double loop, the system undergoes transitions from a gapped to a gapless state. We also evaluate the Josephson currents flowing in the different arms as a function of magnetic fluxes, and we explore the quasiparticle transport by considering a metallic probe tunnel-coupled to the Josephson junction and calculating its I-V characteristics. Finally, we study the performances of the omega-SQUIPT and its potential applications by investigating its electrical and magnetometric properties.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Quantum interferometer for quartets in superconducting three-terminal Josephson junctions
    Melin, Regis
    Feinberg, Denis
    [J]. PHYSICAL REVIEW B, 2023, 107 (16)
  • [2] Three-Terminal Superconducting Digital Transistor
    Raissi, Farshid
    Khooshemehri, Aylar
    Erfanian, Alireza
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2019, 29 (04)
  • [3] Cross-correlated shot noise in three-terminal superconducting hybrid nanostructures
    Golubev, Dmitry S.
    Zaikin, Andrei D.
    [J]. PHYSICAL REVIEW B, 2019, 99 (14)
  • [4] Thermopower of three-terminal topological superconducting systems
    Valentini, Stefano
    Fazio, Rosario
    Giovannetti, Vittorio
    Taddei, Fabio
    [J]. PHYSICAL REVIEW B, 2015, 91 (04):
  • [5] Defective transport properties of three-terminal carbon nanotube junctions
    del Valle, M
    Tejedor, C
    Cuniberti, G
    [J]. PHYSICAL REVIEW B, 2005, 71 (12)
  • [6] Tuning transport properties of graphene three-terminal structures by mechanical deformation
    Torres, V.
    Faria, D.
    Latge, A.
    [J]. PHYSICAL REVIEW B, 2018, 97 (16)
  • [7] Andreev Spectroscopy in Three-Terminal Hybrid Nanostructure
    Michalek, G.
    Bulka, B. R.
    Urbaniak, M.
    Domanski, T.
    Wysokinski, K. I.
    [J]. ACTA PHYSICA POLONICA A, 2015, 127 (02) : 293 - 295
  • [8] A Superconducting-Nanowire Three-Terminal Electrothermal Device
    McCaughan, Adam N.
    Berggren, Karl K.
    [J]. NANO LETTERS, 2014, 14 (10) : 5748 - 5753
  • [9] Three-Terminal Si/SiC Hybrid Switch
    Song, Xiaoqing
    Zhang, Liqi
    Huang, Alex Q.
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (09) : 8867 - 8871
  • [10] Threshold Effects in Three-Terminal Hybrid Systems
    Michalek, G.
    [J]. ACTA PHYSICA POLONICA A, 2014, 126 (01) : 224 - 225