Classification of Cancerous Profiles using Machine Learning

被引:10
|
作者
Sharma, Aman [1 ]
Rani, Rinkle [1 ]
机构
[1] Thapar Univ, Dept Comp Sc & Engn, Patiala, Punjab, India
关键词
Cancer; Clustering; Machine Learning; Genes; Drug Prediction; GENE-EXPRESSION DATA; PREDICTION;
D O I
10.1109/MLDS.2017.6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are variety of options available for cancer treatment. The type of treatment recommended for an individual is influenced by various factors such as cancer-type, the severity of cancer (stage) and most important the genetic heterogeneity. In such a complex environment, the targeted drug treatments are likely to be irresponsive or respond differently. To study anticancer drug response we need to understand cancerous profiles. These cancerous profiles carry information which can reveal the underlying factors responsible for cancer growth. Hence, there is need to analyze cancer data for predicting optimal treatment options. Analysis of such profiles can help to predict and discover potential drug targets and drugs. In this paper the main aim is to provide machine learning based classification technique for cancerous profiles.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条
  • [31] Automatic flow classification using machine learning
    Anantavrasilp, Isara
    Schoeler, Thorsten
    SOFTCOM 2007: 15TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS, 2007, : 390 - +
  • [32] Frog classification using machine learning techniques
    Huang, Chenn-Jung
    Yang, Yi-Ju
    Yang, Dian-Xiu
    Chen, You-Jia
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 3737 - 3743
  • [33] Petrofacies classification using machine learning algorithms
    Silva A.A.
    Tavares M.W.
    Carrasquilla A.
    Misságia R.
    Ceia M.
    Silva, Adrielle A. (adrielle@lenep.uenf.br), 1600, Society of Exploration Geophysicists (85): : WA101 - WA113
  • [34] Classification of Diabetes Types using Machine Learning
    Adigun, Oyeranmi
    Oyeranm, Folasade
    Yekini, Nureni
    Babatunde, Ronke
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 152 - 161
  • [35] DAMAGE CLASSIFICATION OF COMPOSITES USING MACHINE LEARNING
    Dabetwar, Shweta
    Ekwaro-Osire, Stephen
    Dias, Joao Paulo
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 13, 2020,
  • [36] Microservice Fingerprinting and Classification using Machine Learning
    Chang, Hyunseok
    Kodialam, Murali
    Lakshman, T. V.
    Mukherjee, Sarit
    2019 IEEE 27TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (IEEE ICNP), 2019,
  • [37] Classification of Heart Sounds Using Machine Learning
    Mastracci, Nathaniel
    Derakhshan, Farnaz
    Sykes, Edward R.
    Khan, Dodo
    2023 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, ICDH, 2023, : 205 - 207
  • [38] Ballistic Target Classification Using Machine Learning
    Sukut, Mertcan
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [39] Grapevine Varieties Classification Using Machine Learning
    Marques, Pedro
    Padua, Luis
    Adao, Telmo
    Hruska, Jonas
    Sousa, Jose
    Peres, Emanuel
    Sousa, Joaquim J.
    Morais, Raul
    Sousa, Antonio
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 186 - 199
  • [40] Skin cancer classification using machine learning
    Rodrigue Bogne Tchema
    Anastasis C. Polycarpou
    Marios Nestoros
    Multimedia Tools and Applications, 2025, 84 (6) : 3239 - 3256