Limit points in the range of the commuting probability function on finite groups

被引:7
|
作者
Hegarty, Peter [1 ,2 ]
机构
[1] Chalmers, Dept Math Sci, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, S-41296 Gothenburg, Sweden
关键词
CONJUGACY CLASSES; COMMUTATIVITY; ELEMENTS; NUMBER;
D O I
10.1515/jgt-2012-0040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a finite group, then Pr(G) denotes the fraction of ordered pairs of elements of G which commute. We show that if l is an element of (2/9, 1] is a limit point of the function Pr on finite groups, then l is an element of Q and there exists an epsilon = epsilon(l) > 0 such that Pr(G) (sic) (l -epsilon(l), l) for any finite group G. These results lend support to some old conjectures of Keith Joseph.
引用
收藏
页码:235 / 247
页数:13
相关论文
共 50 条
  • [22] Commuting Probability for Approximate Subgroups of a Finite Group
    Detomi, Eloisa
    Morigi, Marta
    Shumyatsky, Pavel
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (02): : 507 - 520
  • [23] Some bounds for commuting probability of finite rings
    Dhiren Kumar Basnet
    Jutirekha Dutta
    Proceedings - Mathematical Sciences, 2019, 129
  • [24] Some bounds for commuting probability of finite rings
    Basnet, Dhiren Kumar
    Dutta, Jutirekha
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (01):
  • [25] Commuting involutions in finite simple groups
    Guralnick, Robert
    Robinson, Geoffrey R.
    EUROPEAN JOURNAL OF MATHEMATICS, 2025, 11 (01)
  • [26] On the commuting complex of finite metanilpotent groups
    Fumagalli, Francesco
    JOURNAL OF GROUP THEORY, 2007, 10 (03) : 307 - 319
  • [27] COMMUTING AUTOMORPHISMS OF SOME FINITE GROUPS
    Fouladi, S.
    Orfi, R.
    GLASNIK MATEMATICKI, 2013, 48 (01) : 91 - 96
  • [28] PROBABILITY OF MUTUALLY COMMUTING TWO FINITE SUBSETS OF A FINITE GROUP
    Barzgar, R. P.
    Erfanian, A.
    Farrokhi, M. D. G.
    ARS COMBINATORIA, 2016, 124 : 165 - 176
  • [29] Compact groups with high commuting probability of monothetic subgroups
    Azevedo, Joao
    Shumyatsky, Pavel
    JOURNAL OF ALGEBRA, 2023, 623 : 34 - 41
  • [30] On the commuting probability of p-elements in a finite group
    Burness, Timothy C.
    Guralnick, Robert
    Moreto, Alexander
    Navarro, Gabriel
    ALGEBRA & NUMBER THEORY, 2023, 17 (06) : 1209 - 1229