Limit points in the range of the commuting probability function on finite groups

被引:7
|
作者
Hegarty, Peter [1 ,2 ]
机构
[1] Chalmers, Dept Math Sci, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, S-41296 Gothenburg, Sweden
关键词
CONJUGACY CLASSES; COMMUTATIVITY; ELEMENTS; NUMBER;
D O I
10.1515/jgt-2012-0040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a finite group, then Pr(G) denotes the fraction of ordered pairs of elements of G which commute. We show that if l is an element of (2/9, 1] is a limit point of the function Pr on finite groups, then l is an element of Q and there exists an epsilon = epsilon(l) > 0 such that Pr(G) (sic) (l -epsilon(l), l) for any finite group G. These results lend support to some old conjectures of Keith Joseph.
引用
收藏
页码:235 / 247
页数:13
相关论文
共 50 条
  • [1] Limit points of commuting probabilities of finite groups
    Browning, Thomas
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (03) : 1392 - 1403
  • [2] On the commuting probability in finite groups
    Guralnick, Robert M.
    Robinson, Geoffrey R.
    JOURNAL OF ALGEBRA, 2006, 300 (02) : 509 - 528
  • [3] Commuting Probability of Finite Groups
    Snehinh Sen
    Resonance, 2023, 28 : 597 - 612
  • [4] Commuting Probability of Finite Groups
    Sen, Snehinh
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2023, 28 (04): : 597 - 612
  • [5] On the commuting probability and supersolvability of finite groups
    Paul Lescot
    Hung Ngoc Nguyen
    Yong Yang
    Monatshefte für Mathematik, 2014, 174 : 567 - 576
  • [6] A Remark on the Commuting Probability in Finite Groups
    Salemkar, Ali Reza
    Tavallaee, Hamid
    Mohammadzadeh, Hamid
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (04) : 755 - 763
  • [7] On the commuting probability and supersolvability of finite groups
    Lescot, Paul
    Hung Ngoc Nguyen
    Yang, Yong
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (04): : 567 - 576
  • [8] On the commuting probability of π-elements in finite groups
    Martinez, Juan
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (06) : 2287 - 2301
  • [9] Limit Points of Commuting Squares
    Nicoara, Remus
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (03) : 847 - 857
  • [10] Signed Hultman numbers and signed generalized commuting probability in finite groups
    Robert Shwartz
    Vadim E. Levit
    Journal of Algebraic Combinatorics, 2022, 55 : 1171 - 1197