Performance prediction of roadheaders using ensemble machine learning techniques

被引:42
|
作者
Seker, Sadi Evren [1 ]
Ocak, Ibrahim [1 ]
机构
[1] Smith Coll, Northampton, MA 01063 USA
来源
NEURAL COMPUTING & APPLICATIONS | 2019年 / 31卷 / 04期
关键词
Roadheader; Performance prediction; Instantaneous cutting rate; Machine learning; Data mining; Ensemble; ARTIFICIAL NEURAL-NETWORK; REGRESSION; ROCKS;
D O I
10.1007/s00521-017-3141-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mechanical excavators are widely used in mining, tunneling and civil engineering projects. There are several types of mechanical excavators, such as a roadheader, tunnel boring machine and impact hammer. This is because these tools can bring productivity to the project quickly, accurately and safely. Among these, roadheaders have some advantages like selective mining, mobility, less over excavation, minimal ground disturbances, elimination of blast vibration, reduced ventilation requirements and initial investment cost. A critical issue in successful roadheader application is the ability to evaluate and predict the machine performance named instantaneous (net) cutting rate. Although there are several prediction methods in the literature, for the prediction of roadheader performance, only a few of them have been developed via artificial neural network techniques. In this study, for this purpose, 333 data sets including uniaxial compressive strength and power on cutting boom, 103 data set including RQD, and 125 data sets including machine weight are accumulated from the literature. This paper focuses on roadheader performance prediction using six different machine learning algorithms and a combination of various machine learning algorithms via ensemble techniques. Algorithms are ZeroR, random forest (RF), Gaussian process, linear regression, logistic regression and multi-layer perceptron (MLP). As a result, MLP and RF give better results than the other algorithms also the best solution achieved was bagging technique on RF and principle component analysis (PCA). The best success rate obtained in this study is 90.2% successful prediction, and it is relatively better than contemporary research.
引用
收藏
页码:1103 / 1116
页数:14
相关论文
共 50 条
  • [21] CLASSIFICATION OF DIABETES USING ENSEMBLE MACHINE LEARNING TECHNIQUES
    Ashisha G.R.
    Mary X.A.
    Raja J.M.
    Scalable Computing, 2024, 25 (04): : 3172 - 3180
  • [22] Obesity Prediction Using Ensemble Machine Learning Approaches
    Jindal, Kapil
    Baliyan, Niyati
    Rana, Prashant Singh
    RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 2, 2018, 708 : 355 - 362
  • [23] Oil Price Prediction Using Ensemble Machine Learning
    Gabralla, Lubna A.
    Jammazi, Rania
    Abraham, Ajith
    2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONICS ENGINEERING (ICCEEE), 2013, : 674 - 679
  • [24] Pitch Accent Prediction Using Ensemble Machine Learning
    Zhang, Aiying
    Ni, Chongjia
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 444 - 447
  • [25] Optimal Spatial Prediction Using Ensemble Machine Learning
    Davies, Molly Margaret
    van der Laan, Mark J.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (01): : 179 - 201
  • [26] Ensemble Churn Prediction for Internet Service Provider with Machine Learning Techniques
    Goy, Gokhan
    Kolukisa, Burak
    Bahcevan, Cenk
    Gungor, Vehbi Cagri
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2020, : 248 - 253
  • [27] Enhancing groundwater quality prediction through ensemble machine learning techniques
    Karimi, Hadi
    Sahour, Soheil
    Khanbeyki, Matin
    Gholami, Vahid
    Sahour, Hossein
    Shahabi-Ghahfarokhi, Sina
    Mohammadi, Mohsen
    Environmental Monitoring and Assessment, 2025, 197 (01)
  • [28] Ensemble Machine Learning Techniques Using Computer Simulation Data for Wild Blueberry Yield Prediction
    Seireg, Hayam R.
    Omar, Yasser M. K.
    Abd El-Samie, Fathi E.
    El-Fishawy, Adel S.
    Elmahalawy, Ahmed
    IEEE ACCESS, 2022, 10 : 64671 - 64687
  • [29] Prediction of Pipe Performance with Ensemble Machine Learning based Approaches
    Shi, Fang
    Liu, Zheng
    Li, Eric
    2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 408 - 414
  • [30] Software Fault Prediction Using an RNN-Based Deep Learning Approach and Ensemble Machine Learning Techniques
    Borandag, Emin
    APPLIED SCIENCES-BASEL, 2023, 13 (03):