Shallow flows of generalised Newtonian fluids on an inclined plane

被引:14
|
作者
Pritchard, David [1 ]
Duffy, Brian R. [1 ]
Wilson, Stephen K. [1 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
关键词
Free-surface flow; Lubrication flow; Non-Newtonian rheology; Thin film; POWER-LAW FLUID; THIN LIQUID-FILMS; GRAVITY CURRENTS; DEBRIS FLOWS; FREE-SURFACE; ROLL WAVES; DRIVEN; SLOPE; SHEET; MODEL;
D O I
10.1007/s10665-014-9725-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We derive a general evolution equation for a shallow layer of a generalised Newtonian fluid undergoing two-dimensional gravity-driven flow on an inclined plane. The flux term appearing in this equation is expressed in terms of an integral involving the prescribed constitutive relation and, crucially, does not require explicit knowledge of the velocity profile of the flow; this allows the equation to be formulated for any generalised Newtonian fluid. In particular, we develop general solutions for travelling waves on a mild slope and for kinematic waves on a moderately steep slope; these results provide simple and accessible models of, for example, the propagation of non-Newtonian mud and debris flows.
引用
收藏
页码:115 / 133
页数:19
相关论文
共 50 条
  • [41] PARTICLE MOVEMENT IN FLOWS OF NON-NEWTONIAN FLUIDS
    GIESEKUS, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (06): : T26 - T37
  • [42] Couette and Poiseuille flows for non-Newtonian fluids
    Siddiqui, AM
    Ahmed, M
    Ghori, QK
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2006, 7 (01) : 15 - 26
  • [43] RHEOLOGICAL NEWTONIAN LAWS FOR OSCILLATING FLOWS OF SIMPLE FLUIDS
    BOHME, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (05): : T359 - T361
  • [44] COLEMAN BD - VISCOMETRIC FLOWS OF NON NEWTONIAN FLUIDS
    不详
    TAPPI, 1966, 49 (08): : A34 - &
  • [45] Contraction and expansion flows of non-Newtonian fluids
    Abdul, T.
    Binding, D.M.
    Sindelar, M.
    Composites manufacturing, 1993, 4 (02): : 109 - 116
  • [46] CERTAIN SECONDARY FLOWS OF NON-NEWTONIAN FLUIDS
    MASHELKAR, RA
    DEVARAJAN, GV
    JOURNAL OF RHEOLOGY, 1978, 22 (03) : 300 - 300
  • [47] PLANE CONVERGING DRAG FLOW OF NEWTONIAN AND INELASTIC NON-NEWTONIAN FLUIDS
    DEYSARKAR, AK
    SCHUMMER, P
    ULBRECHT, J
    CHEMICAL ENGINEERING COMMUNICATIONS, 1978, 2 (4-5) : 197 - 218
  • [48] Investigation of simplified thermal expansion models for compressible Newtonian fluids applied to nonisothermal plane Couette and Poiseuille flows
    Bechtel, SE
    Cai, MH
    Rooney, FJ
    Wang, Q
    PHYSICS OF FLUIDS, 2004, 16 (11) : 3955 - 3974
  • [49] Robust stabilised finite element solvers for generalised Newtonian fluid flows
    Schussnig, Richard
    Pacheco, Douglas R. Q.
    Fries, Thomas-Peter
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 442
  • [50] Evolution of disturbances on shallow layers of non-Newtonian fluids
    Berezin, YA
    Hutter, K
    Spodareva, LA
    PHYSICA D, 2000, 139 (3-4): : 319 - 334