Multiple integration on time scales

被引:0
|
作者
Bohner, M [1 ]
Guseinov, GS
机构
[1] Univ Missouri, Dept Math & Stat, Rolla, MO 65401 USA
[2] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
来源
DYNAMIC SYSTEMS AND APPLICATIONS | 2005年 / 14卷 / 3-4期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an introduction to integration theory for multivariable functions on time scales is given. Such an integral calculus can be used to develop a theory of partial dynamic equations on time scales in order to unify and extend the usual partial differential equations and partial difference equations.
引用
收藏
页码:579 / 606
页数:28
相关论文
共 50 条
  • [21] Basics of Riemann delta and nabla integration on time scales
    Guseinov, GS
    Kaymakçalan, B
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (11) : 1001 - 1017
  • [22] Integration of functions rd-continuous on time scales
    Pokornyi, Yu. V.
    Bakhtina, Zh. I.
    [J]. DOKLADY MATHEMATICS, 2011, 83 (01) : 104 - 106
  • [23] Integration of functions rd-continuous on time scales
    Yu. V. Pokornyi
    Zh. I. Bakhtina
    [J]. Doklady Mathematics, 2011, 83 : 104 - 106
  • [24] INTEGRATION OF ANGIOGENESIS MODULES AT MULTIPLE SCALES: FROM MOLECULAR TO TISSUE
    Qutub, Amina A.
    Liu, Gang
    Vempati, Prakash
    Popel, Aleksander S.
    [J]. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2009, 2009, : 316 - 327
  • [25] Process innovation through Integration approaches at multiple scales: a perspective
    Varbanov, Petar Sabev
    Seferlis, Panos
    [J]. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2014, 16 (07) : 1229 - 1234
  • [26] Process innovation through Integration approaches at multiple scales: a perspective
    Petar Sabev Varbanov
    Panos Seferlis
    [J]. Clean Technologies and Environmental Policy, 2014, 16 : 1229 - 1234
  • [27] Teaching science at multiple space time scales
    Horwitz, P
    Neumann, E
    Schwartz, J
    [J]. COMMUNICATIONS OF THE ACM, 1996, 39 (08) : 100 - 102
  • [28] Analysing forced oscillators with multiple time scales
    Narayan, O
    Roychowdhury, J
    [J]. TWELFTH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS, 1999, : 621 - 624
  • [29] MULTIPLE TIME SCALES FOR NONLINEAR-SYSTEMS
    SILVAMADRIZ, R
    SASTRY, SS
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1986, 5 (01) : 153 - 169
  • [30] A utility maximisation problem on multiple time scales
    Atici, Ferhan M.
    Biles, Daniel C.
    Lebedinsky, Alex
    [J]. INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2011, 3 (1-2) : 38 - 47