Quantum engine based on many-body localization

被引:57
|
作者
Halpern, Nicole Yunger [1 ,2 ,5 ,6 ]
White, Christopher David [1 ,2 ]
Gopalakrishnan, Sarang [1 ,2 ,3 ,4 ]
Refael, Gil [1 ,2 ,3 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] CALTECH, Walter Burke Inst, Pasadena, CA 91125 USA
[4] CUNY Coll Staten Isl, Staten Isl, NY 10314 USA
[5] Harvard Smithsonian Ctr Astrophys, ITAMP, 60 Garden St, Cambridge, MA 02138 USA
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
STATISTICAL-MECHANICS; FINITE-TIME; NONEQUILIBRIUM; THERMALIZATION; SYSTEM; THERMODYNAMICS; MANIPULATION; CHAOS; STATE;
D O I
10.1103/PhysRevB.99.024203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many-body-localized (MBL) systems do not thermalize under their intrinsic dynamics. The athermality of MBL, we propose, can be harnessed for thermodynamic tasks. We illustrate this ability by formulating an Otto engine cycle for a quantum many-body system. The system is ramped between a strongly localized MBL regime and a thermal (or weakly localized) regime. The difference between the energy-level correlations of MBL systems and of thermal systems enables mesoscale engines to run in parallel in the thermodynamic limit, enhances the engine's reliability, and suppresses worst-case trials. We estimate analytically and calculate numerically the engine's efficiency and per-cycle power. The efficiency mirrors the efficiency of the conventional thermodynamic Otto engine. The per-cycle power scales linearly with the system size and inverse-exponentially with a localization length. This work introduces a thermodynamic lens onto MBL, which, having been studied much recently, can now be considered for use in thermodynamic tasks.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Many-Body Resonances in the Avalanche Instability of Many-Body Localization
    Ha, Hyunsoo
    Morningstar, Alan
    Huse, David A.
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (25)
  • [32] Many-body localization in a quantum simulator with programmable random disorder
    Smith, J.
    Lee, A.
    Richerme, P.
    Neyenhuis, B.
    Hess, P. W.
    Hauke, P.
    Heyl, M.
    Huse, D. A.
    Monroe, C.
    [J]. NATURE PHYSICS, 2016, 12 (10) : 907 - 911
  • [33] Many-body localization in a quantum simulator with programmable random disorder
    J. Smith
    A. Lee
    P. Richerme
    B. Neyenhuis
    P. W. Hess
    P. Hauke
    M. Heyl
    D. A. Huse
    C. Monroe
    [J]. Nature Physics, 2016, 12 : 907 - 911
  • [34] Remanent Magnetization: Signature of Many-Body Localization in Quantum Antiferromagnets
    Ros, V.
    Muller, M.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (23)
  • [35] Entanglement complexity in quantum many-body dynamics, thermalization, and localization
    Yang, Zhi-Cheng
    Hamma, Alioscia
    Giampaolo, Salvatore M.
    Mucciolo, Eduardo R.
    Chamon, Claudio
    [J]. PHYSICAL REVIEW B, 2017, 96 (02)
  • [36] Asymptotic Quantum Many-Body Localization from Thermal Disorder
    De Roeck, Wojciech
    Huveneers, Francois
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (03) : 1017 - 1082
  • [37] Asymptotic Quantum Many-Body Localization from Thermal Disorder
    Wojciech De Roeck
    François Huveneers
    [J]. Communications in Mathematical Physics, 2014, 332 : 1017 - 1082
  • [38] Many-body localization landscape
    Balasubramanian, Shankar
    Liao, Yunxiang
    Galitski, Victor
    [J]. PHYSICAL REVIEW B, 2020, 101 (01)
  • [39] Topology and many-body localization
    Bhatt, R. N.
    Krishna, Akshay
    [J]. ANNALS OF PHYSICS, 2021, 435
  • [40] Dynamics of many-body localization
    Bar Lev, Yevgeny
    Reichman, David R.
    [J]. PHYSICAL REVIEW B, 2014, 89 (22)