Quantum engine based on many-body localization

被引:57
|
作者
Halpern, Nicole Yunger [1 ,2 ,5 ,6 ]
White, Christopher David [1 ,2 ]
Gopalakrishnan, Sarang [1 ,2 ,3 ,4 ]
Refael, Gil [1 ,2 ,3 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] CALTECH, Walter Burke Inst, Pasadena, CA 91125 USA
[4] CUNY Coll Staten Isl, Staten Isl, NY 10314 USA
[5] Harvard Smithsonian Ctr Astrophys, ITAMP, 60 Garden St, Cambridge, MA 02138 USA
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
STATISTICAL-MECHANICS; FINITE-TIME; NONEQUILIBRIUM; THERMALIZATION; SYSTEM; THERMODYNAMICS; MANIPULATION; CHAOS; STATE;
D O I
10.1103/PhysRevB.99.024203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many-body-localized (MBL) systems do not thermalize under their intrinsic dynamics. The athermality of MBL, we propose, can be harnessed for thermodynamic tasks. We illustrate this ability by formulating an Otto engine cycle for a quantum many-body system. The system is ramped between a strongly localized MBL regime and a thermal (or weakly localized) regime. The difference between the energy-level correlations of MBL systems and of thermal systems enables mesoscale engines to run in parallel in the thermodynamic limit, enhances the engine's reliability, and suppresses worst-case trials. We estimate analytically and calculate numerically the engine's efficiency and per-cycle power. The efficiency mirrors the efficiency of the conventional thermodynamic Otto engine. The per-cycle power scales linearly with the system size and inverse-exponentially with a localization length. This work introduces a thermodynamic lens onto MBL, which, having been studied much recently, can now be considered for use in thermodynamic tasks.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Many-body localization and quantum thermalization
    Altman, Ehud
    [J]. NATURE PHYSICS, 2018, 14 (10) : 979 - 983
  • [2] Quantum revivals and many-body localization
    Vasseur, R.
    Parameswaran, S. A.
    Moore, J. E.
    [J]. PHYSICAL REVIEW B, 2015, 91 (14)
  • [3] Many-body localization and quantum thermalization
    Ehud Altman
    [J]. Nature Physics, 2018, 14 : 979 - 983
  • [4] Quantum Ergodicity in the Many-Body Localization Problem
    Monteiro, Felipe
    Tezuka, Masaki
    Altland, Alexander
    Huse, David A.
    Micklitz, Tobias
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (03)
  • [5] Many-body localization in waveguide quantum electrodynamics
    Fayard, N.
    Henriet, L.
    Asenjo-Garcia, A.
    Chang, D. E.
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [6] Quantum quenches, thermalization, and many-body localization
    Canovi, Elena
    Rossini, Davide
    Fazio, Rosario
    Santoro, Giuseppe E.
    Silva, Alessandro
    [J]. PHYSICAL REVIEW B, 2011, 83 (09):
  • [7] Eigenstate Localization in a Many-Body Quantum System
    Yin, Chao
    Nandkishore, Rahul
    Lucas, Andrew
    [J]. PHYSICAL REVIEW LETTERS, 2024, 133 (13)
  • [8] Quantum chaos challenges many-body localization
    Suntajs, Jan
    Bonca, Janez
    Prosen, Tomaz
    Vidmar, Lev
    [J]. PHYSICAL REVIEW E, 2020, 102 (06)
  • [9] On Many-Body Localization for Quantum Spin Chains
    John Z. Imbrie
    [J]. Journal of Statistical Physics, 2016, 163 : 998 - 1048
  • [10] Analyzing Many-Body Localization with a Quantum Computer
    Bauer, Bela
    Nayak, Chetan
    [J]. PHYSICAL REVIEW X, 2014, 4 (04):