Associated curves of a Frenet curve and their applications

被引:51
|
作者
Choi, Jin Ho [1 ]
Kim, Young Ho [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math, Taegu 702701, South Korea
基金
新加坡国家研究基金会;
关键词
Associated curve; Principal-direction curve; Principal-donor curve; General helix; Slant helix; PD-rectifying curve; Bertrand curve;
D O I
10.1016/j.amc.2012.02.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of the principal (binormal)-direction curve and principal (binormal)-donor curve of a Frenet curve in E-3 and give the relationship of curvature and torsion of its mates. As application, we characterize general helices and slant helices in terms of their associated curves and give a canonical method to construct them. Also, we give a new characterization of Bertrand curve. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:9116 / 9124
页数:9
相关论文
共 50 条
  • [21] On curvatures of a frenet curve in the pseudo - Galilean space
    Ogrenmis, Alper Osman
    INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2010, 5 (15): : 2363 - 2368
  • [22] Serret-Frenet Formulas for Octonionic Curves
    Bektas, Ozcan
    Yuce, Salim
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (03): : 47 - 62
  • [23] FERMI-FRENET COORDINATES FOR SPACELIKE CURVES
    Underwood, Michael S.
    Marzlin, Karl-Peter
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (06): : 1147 - 1154
  • [24] Frenet Curve Couples in Three Dimensional Lie Groups
    Okuyucu, Osman Zeki
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 133 (03): : 653 - 671
  • [25] Investigation of a curve using Frenet frame in the lightlike cone
    Kulahci, Mihriban
    OPEN PHYSICS, 2017, 15 (01): : 175 - 181
  • [26] FRENET FORMULAS FOR HOLOMORPHIC-CURVES IN THE 2 QUADRIC
    YANG, K
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 33 (02) : 195 - 206
  • [27] Geometric characterizations of canal surfaces with Frenet center curves
    Qian, Jinhua
    Liu, Jie
    Fu, Xueshan
    Jung, Seoung Dal
    AIMS MATHEMATICS, 2021, 6 (09): : 9476 - 9490
  • [28] GENERALIZED SMARANDACHE CURVES WITH FRENET-TYPE FRAME
    Isbilir, Zehra
    Tosun, Murat
    HONAM MATHEMATICAL JOURNAL, 2024, 46 (02): : 181 - 197
  • [29] Magnetic Frenet curves on para-Sasakian manifolds
    Bejan, Cornelia-Livia
    Binh, Tran Quoc
    Druta-Romaniuc, Simona-Luiza
    FILOMAT, 2023, 37 (05) : 1479 - 1496
  • [30] Serret-Frenet Frame and Curvatures of Bezier Curves
    Erkan, Esra
    Yuce, Salim
    MATHEMATICS, 2018, 6 (12):