Surface melting and breakup of metal nanowires: Theory and molecular dynamics simulation

被引:8
|
作者
Ridings, Kannan M. [1 ]
Aldershof, Thomas S. [2 ]
Hendy, Shaun C. [1 ,3 ]
机构
[1] Univ Auckland, MacDiarmid Inst Adv Mat & Nanotechnol, Dept Phys, Auckland 1142, New Zealand
[2] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[3] Univ Auckland, Dept Phys, Te Punaha Matatini, Auckland 1142, New Zealand
来源
JOURNAL OF CHEMICAL PHYSICS | 2019年 / 150卷 / 09期
关键词
SMALL PARTICLES; DEPENDENCE; SUBSTRATE;
D O I
10.1063/1.5086435
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider the surface melting of metal nanowires by solving a phenomenological two-parabola Landau model and by conducting molecular dynamics simulations of nickel and aluminum nanowires. The model suggests that surface melting will precede bulk melting when the melt completely wets the surface and the wire is sufficiently thick, as is the case for planar surfaces and sufficiently large nanoparticles. Surface melting does not occur if the melt partially wets or does not wet the surface. We test this model, which assumes that the surface energies of the wire are isotropic, using molecular dynamics simulations. For nickel, we observe the onset of anisotropic surface melting associated with each of the two surface facets present, but this gives way to uniform surface melting and the solid melts radially until the solid core eventually breaks up. For aluminum, while we observe complete surface melting of one facet, the lowest energy surface remains partially dry even up to the point where the melt completely penetrates the solid core. Published under license by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Molecular dynamics simulation of sputtering of metal clusters on polyethylene surface
    O. A. Yermolenko
    G. V. Kornich
    G. Betz
    Bulletin of the Russian Academy of Sciences: Physics, 2010, 74 (2) : 114 - 117
  • [32] Molecular dynamics simulations of the melting of Al-Ni nanowires
    Davoodi, Jamal
    Dadashi, Sakine
    Yarifard, Mohsen
    PHILOSOPHICAL MAGAZINE, 2016, 96 (22) : 2300 - 2310
  • [33] Molecular dynamics simulation of the break of magnesium nanowires
    Takahashi, Atsushi
    Kurokawa, Shu
    Sakai, Akira
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (07): : 1363 - 1371
  • [34] Size effects on the melting of nickel nanowires: a molecular dynamics study
    Wen, YH
    Zhu, ZZ
    Zhu, RZ
    Shao, GF
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 25 (01): : 47 - 54
  • [35] Molecular dynamics simulations of the tensile and melting behaviours of silicon nanowires
    Jing, Yuhang
    Meng, Qingyuan
    Zhao, Wei
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (04): : 685 - 689
  • [36] Dynamics of Surface Plasmon Polaritons in Metal Nanowires
    Johns, Paul
    Beane, Gary
    Yu, Kuai
    Hartland, Gregory V.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (10): : 5445 - 5459
  • [37] Melting of Au nanoclusters by molecular dynamics simulation
    Zhang, YN
    Wang, L
    Bian, XF
    ACTA PHYSICO-CHIMICA SINICA, 2003, 19 (01) : 35 - 39
  • [38] Melting of MgO studied by molecular dynamics simulation
    Ferneyhough, R.
    Fincham, D.
    Price, G.D.
    Gillan, M.J.
    Modelling and Simulation in Materials Science and Engineering, 1994, 2 (06): : 1101 - 1110
  • [39] Melting of Cu nanoclusters by molecular dynamics simulation
    Wang, L
    Zhang, YN
    Bian, XF
    Chen, Y
    PHYSICS LETTERS A, 2003, 310 (2-3) : 197 - 202
  • [40] Molecular dynamics simulation for surface melting and self-preservation effect of methane hydrate
    LiYing Ding
    ChunYu Geng
    YueHong Zhao
    XianFeng He
    Hao Wen
    Science in China Series B: Chemistry, 2008, 51 : 651 - 660