Voronovskaja Type Approximation Theorem for q-Szasz-Schurer Operators

被引:0
|
作者
Vedi, Tuba [1 ]
Oezarslan, Mehmet Ali [1 ]
机构
[1] Eastern Mediterranean Univ, Dept Math, Gazimagusa, Cyprus
来源
关键词
D O I
10.1007/978-3-319-28443-9_25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 2011, Ozarslan (Miscolc Math Notes, 12:225-235, 2011) introduced the q-Szasz-Schurer operators and investigated their approximation properties. In the present paper, we state the Voronovskaja-type asymptotic formula for q-analogue of Szasz-Schurer operators.
引用
收藏
页码:353 / 361
页数:9
相关论文
共 50 条
  • [41] WEIGHTED APPROXIMATION ON SZASZ-TYPE OPERATORS
    Feng Guo (Taizhou University
    [J]. Analysis in Theory and Applications, 2003, (01) : 47 - 54
  • [42] Szasz-Schurer operators on a domain in complex plane
    Sucu S.
    İbi̇kli̇ E.
    [J]. Mathematical Sciences, 2013, 7 (1)
  • [43] DUNKL ANALOUGE OF SZaSZ SCHURER BETA BIVARIATE OPERATORS
    Mishra, Vishnu Narayan
    Raiz, Mohd
    Rao, Nadeem
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (04): : 651 - 669
  • [44] Rate of Approximation of Derivatives for Durrmeyer Schurer Type Operators
    Gupta, M. K.
    Beniwal, Man Singh
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2008, 32 (01) : 79 - 86
  • [45] King Type (p, q)-Bernstein Schurer Operators
    Bawa, Parveen
    Bhardwaj, Neha
    Bhatia, Sumit Kaur
    [J]. THAI JOURNAL OF MATHEMATICS, 2023, 21 (03): : 431 - 443
  • [46] q-Bernstein-Schurer-Kantorovich type operators
    Agrawal, P. N.
    Goyal, Meenu
    Kajla, Arun
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 169 - 180
  • [47] WEIGHTED APPROXIMATION PROPERTIES OF STANCU TYPE MODIFICATION OF q-SZASZ-DURRMEYER OPERATORS
    Icoz, Gurhan
    Mohapatra, R. N.
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2016, 65 (01): : 87 - 103
  • [48] q-Bernstein-Schurer-Kantorovich type operators
    P. N. Agrawal
    Meenu Goyal
    Arun Kajla
    [J]. Bollettino dell'Unione Matematica Italiana, 2015, 8 (3) : 169 - 180
  • [49] Some Approximation Results For (p, q)-Lupas-Schurer Operators
    Kanat, K.
    Sofyalioglu, M.
    [J]. FILOMAT, 2018, 32 (01) : 217 - 229
  • [50] Approximation by (p,q) Szasz-beta-Stancu operators
    Sharma, Prerna Maheshwari
    Abid, Mohammed
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (01) : 191 - 200