EXISTENCE PRINCIPLES FOR HIGHER-ORDER NONLOCAL BOUNDARY-VALUE PROBLEMS AND THEIR APPLICATIONS TO SINGULAR STURM-LIOUVILLE PROBLEMS

被引:2
|
作者
Stanek, S. [1 ]
机构
[1] Palacky Univ, CR-77147 Olomouc, Czech Republic
关键词
Space Variable; Liouville Problem; Singular Problem; Liouville Type; Lebesgue Integrable Function;
D O I
10.1007/s11253-008-0058-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present existence principles for the nonlocal boundary-value problem (phi(u((p- 1))))' = g(t, u, ... , u((p-1))), alpha(k)(u) = 0, 1 <= k <= p-1, where p >= 2, phi: R -> R is an increasing and odd homeomorphism, g is a Caratheodory function that is either regular or has singularities in its space variables, and alpha(k) : Cp-1[0, T] -> R is a continuous functional. An application of the existence principles to singular Sturm-Liouville problems (- 1)(n)(phi(u((2n-1))))' = f(t, u, ..., u((2n-1))), u((2k))(0) = 0, a(k)u((2k))(T) + b(k)u((2k+ 1))(T) = 0, 0 <= k <= n - 1, is given.
引用
收藏
页码:277 / 298
页数:22
相关论文
共 50 条