Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa)

被引:31
|
作者
Yan, Yong-Feng [1 ,2 ,3 ]
Lestari, Puji [1 ,4 ]
Lee, Kyu-Jong [1 ,2 ]
Kim, Moon Young [1 ,2 ]
Lee, Suk-Ha [1 ,2 ]
Lee, Byun-Woo [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Plant Sci, Seoul 151921, South Korea
[2] Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul 151921, South Korea
[3] Jilin Acad Agr Sci, Gongzhuling Jilin 136100, Peoples R China
[4] Indonesian Ctr Agr Biotechnol & Genet Resources R, Bogor 16111, Indonesia
关键词
rice; QTL mapping; cadmium; accumulation; distribution; GENOTYPIC VARIATION; TRANSLOCATION; GRAIN; L; TOLERANCE; PLANTS; CD; CULTIVARS;
D O I
10.1139/gen-2012-0106
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cadmium (Cd) poses a serious risk to human health due to its biological concentration through the food chain. To date, information on genetic and molecular mechanisms of Cd accumulation and distribution in rice remains to be elucidated. We developed an independent F-7 RIL population derived from a cross between two japonica cultivars with contrasting Cd levels, 'Suwon490' and 'SNU-SG1', for QTLs identification of Cd accumulation and distribution. 'Suwon490' accumulated five times higher Cd in grain than 'SNU-SG1'. Large genotypic variations in Cd accumulation (17-fold) and concentration (12-fold) in grain were found among RILs. Significant positive correlations between Cd accumulation in grain with shoot Cd accumulation and shoot to grain distribution ratio of Cd signify that both shoot Cd accumulation and shoot to grain Cd distribution regulate Cd accumulation in japonica rice grain. A total of five main effect QTLs (scc10 for shoot Cd accumulation; gcc3, gcc9, gcc11 for grain Cd accumulation; and sgr5 for shoot to grain distribution ratio) were detected in chromosomes 10, 3, 9, 11, and 5, respectively. Of these, the novel potential QTL sgr5 has the strongest effect on shoot to grain Cd distribution. In addition, two digenic epistatic interaction QTLs were identified, suggesting the substantial contribution of nonallelic genes in genetic control of these Cd-related traits.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 50 条
  • [41] Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.)
    Amarawathi, Yellari
    Singh, Rakesh
    Singh, Ashok K.
    Singh, Vijai P.
    Mohapatra, Trilochan
    Sharma, Tilak R.
    Singh, Nagendra K.
    MOLECULAR BREEDING, 2008, 21 (01) : 49 - 65
  • [42] Analysis of quantitative trait loci (QTLs) associated with wettability in rice (Oryza sativa L.)
    Jong-Won Kang
    Rahmatullah Jan
    Kyung-Min Kim
    Euphytica, 2019, 215
  • [43] Analysis of quantitative trait loci for panicle layer uniformity in rice (Oryza sativa L.)
    L. Y. Ma
    P. Xiao
    J. Cai
    X. M. Li
    Z. J. Ji
    Y. W. Xia
    C. D. Yang
    J. S. Bao
    Cereal Research Communications, 2009, 37 : 383 - 390
  • [44] Analysis of quantitative trait loci (QTLs) associated with wettability in rice (Oryza sativa L.)
    Kang, Jong-Won
    Jan, Rahmatullah
    Kim, Kyung-Min
    EUPHYTICA, 2019, 215 (07)
  • [45] Mapping and validation of quantitative trait loci associated with dorsal aleurone thickness in rice (Oryza sativa)
    Yiwen Xu
    Siming Chen
    Mingming Xue
    Xingyu Chen
    Zhibo Liu
    Xuefeng Wei
    Ji-Ping Gao
    Chen Chen
    Theoretical and Applied Genetics, 2023, 136
  • [46] Molecular mapping of quantitative trait loci for grain chalkiness in rice (Oryza sativa L.)
    Chandusingh, P. R.
    Singh, N. K.
    Prabhu, K. V.
    Vinod, K. K.
    Singh, A. K.
    INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 2013, 73 (03) : 244 - 251
  • [47] Mapping and characterization of quantitative trait loci for mesocotyl elongation in rice (Oryza sativa L.)
    Hyun-Sook Lee
    Kazuhiro Sasaki
    Atsushi Higashitani
    Sang-Nag Ahn
    Tadashi Sato
    Rice, 2012, 5
  • [48] Mapping and characterization of quantitative trait loci for mesocotyl elongation in rice (Oryza sativa L.)
    Lee, Hyun-Sook
    Sasaki, Kazuhiro
    Higashitani, Atsushi
    Ahn, Sang-Nag
    Sato, Tadashi
    RICE, 2012, 5
  • [49] Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.)
    Miura, K
    Lin, SY
    Yano, M
    Nagamine, T
    THEORETICAL AND APPLIED GENETICS, 2002, 104 (6-7) : 981 - 986
  • [50] Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L)
    Ray, JD
    Yu, L
    McCouch, SR
    Champoux, MC
    Wang, G
    Nguyen, HT
    THEORETICAL AND APPLIED GENETICS, 1996, 92 (06) : 627 - 636