Subelliptic Hamilton-Jacobi equations: the coercive evolution case

被引:4
|
作者
Biroli, Marco [1 ,2 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Accademia Nazl Sci Detta XL, Rome, Italy
关键词
partial differential equations in Carnot groups; viscosity solutions of Hamilton-Jacobi equations; regularity; HOPF-LAX FORMULA; HEISENBERG-GROUP; VISCOSITY SOLUTIONS; BANACH SPACES; EXISTENCE;
D O I
10.1080/00036811.2010.530257
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence and uniqueness of a viscosity (Lipschitz) solution relative to bounded uniformly continuous (Lipschitz) initial data for a subelliptic evolution HamiltonJacobi equation with a coercive Hamiltonian. Moreover we also prove a comparison property for viscosity sub- and supersolutions.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条