Random homogenization of coercive Hamilton-Jacobi equations in 1d

被引:21
|
作者
Gao, Hongwei [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
STOCHASTIC HOMOGENIZATION;
D O I
10.1007/s00526-016-0968-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the random homogenization of general coercive non-convex Hamilton-Jacobi equations in the one dimensional case. This extends the result of Armstrong, Tran and Yu when the Hamiltonian has a separable form H(p, x, omega) = H(p)+ V(x, omega) for any coercive H(p).
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Random homogenization of coercive Hamilton–Jacobi equations in 1d
    Hongwei Gao
    [J]. Calculus of Variations and Partial Differential Equations, 2016, 55
  • [2] Breakdown of homogenization for the random Hamilton-Jacobi equations
    Weinan, E.
    Wehr, Jan
    Xin, Jack
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (01) : 189 - 197
  • [3] Some homogenization results for non-coercive Hamilton-Jacobi equations
    Barles, Guy
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (04) : 449 - 466
  • [4] Homogenization of Monotone Systems of Non-Coercive Hamilton-Jacobi Equations
    Junfang Wang
    Peihao Zhao
    [J]. Indian Journal of Pure and Applied Mathematics, 2018, 49 : 285 - 300
  • [5] HOMOGENIZATION OF MONOTONE SYSTEMS OF NON-COERCIVE HAMILTON-JACOBI EQUATIONS
    Wang, Junfang
    Zhao, Peihao
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02): : 285 - 300
  • [6] Homogenization of pathwise Hamilton-Jacobi equations
    Seeger, Benjamin
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 110 : 1 - 31
  • [7] Homogenization for stochastic Hamilton-Jacobi equations
    Rezakhanlou, F
    Tarver, JE
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 151 (04) : 277 - 309
  • [8] HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS
    Oberman, Adam M.
    Takei, Ryo
    Vladimirsky, Alexander
    [J]. MULTISCALE MODELING & SIMULATION, 2009, 8 (01): : 269 - 295
  • [9] Homogenization for¶Stochastic Hamilton-Jacobi Equations
    Fraydoun Rezakhanlou
    James E. Tarver
    [J]. Archive for Rational Mechanics and Analysis, 2000, 151 : 277 - 309
  • [10] Cauchy problem and periodic homogenization for nonlocal Hamilton-Jacobi equations with coercive gradient terms
    Bardi, Martino
    Cesaroni, Annalisa
    Topp, Erwin
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (06) : 3028 - 3059