Study of an MHD Flow of the Carreau Fluid Flow Over a Stretching Sheet with a Variable Thickness by Using an Implicit Finite Difference Scheme

被引:17
|
作者
Malik, M. Y. [1 ]
Khan, M. [1 ]
Salahuddin, T. [1 ]
机构
[1] Quaid I Azam Univ, Dept Math, Islamabad 44000, Pakistan
关键词
MHD flow; Carreau fluid; stretching sheet; Keller box method; MODEL;
D O I
10.1134/S0021894417060098
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present analysis deals with a two-dimensional MHD flow of the Carreau fluid over a stretching sheet with a variable thickness. The governing partial differential equations are converted into an ordinary differential equation by using the similarity approach. The solution of the differential equation is calculated by using the Keller box method. The solution is studied for different values of the Hartmann number, Weissenberg number, wall thickness parameter, and power-law index. The skin friction coefficient is calculated. The present results are compared with available relevant data.
引用
收藏
页码:1033 / 1039
页数:7
相关论文
共 50 条
  • [21] Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity
    Mukhopadhyay, S
    Layek, GC
    Samad, SA
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (21-22) : 4460 - 4466
  • [22] MHD Casson Nanofluid Flow and Heat Transfer at a Stretching Sheet with Variable Thickness
    Prasad, K. V.
    Vajravelu, K.
    Vaidya, H.
    JOURNAL OF NANOFLUIDS, 2016, 5 (03) : 423 - 435
  • [23] Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness
    Daniel, Yahaya Shagaiya
    Aziz, Zainal Abdul
    Ismail, Zuhaila
    Salah, Faisal
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2018, 5 (02) : 232 - 242
  • [25] Heat transfer in the MHD flow of a viscoelastic fluid over a stretching sheet
    Lawrence, PS
    Rao, BN
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 (04): : 317 - 319
  • [27] Entropy Analysis of MHD Fluid Flow over a Curved Stretching Sheet
    Narla, V. K.
    Biswas, Chandan
    Rao, G. Ananda
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (ICMSA-2019), 2020, 2246
  • [28] Chebyshev finite difference method for MHD flow of a micropolar fluid past a stretching sheet with heat transfer
    Eldabe, NT
    Elshehawey, EF
    Elbarbary, EME
    Elgazery, NS
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 160 (02) : 437 - 450
  • [29] Impact of thermal radiation on electrical MHD flow of nanofluid over nonlinear stretching sheet with variable thickness
    Daniel, Yahaya Shagaiya
    Aziz, Zainal Abdul
    Ismail, Zuhaila
    Salah, Faisal
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 2187 - 2197
  • [30] Variable Fluid Property for MHD Viscous Fluid Containing Gyrotactic Microorganisms Flow over a Permeable Stretching Sheet
    Kumari, Manjeet
    Jain, Shalini
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2019, 37 (03) : 766 - 778